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 sets of particles (particle systems) 
are used to model time-dependent 
phenomena such as snow, fire, smoke

Motivation
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 particles are characterized by mass, position and velocity

 forces determine the dynamic behavior

 inter-particle forces are neglected

 particles can carry arbitrary attributes for rendering 
purposes, e.g., shape, color, transparency, life time 

Motivation

Kolb, Latta, Rezk-Salama
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Demo

750,000 particles in XNA, 
http://www.youtube.com/watch?v=CyAZ2Y7nOTw
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 quantities relevant for the motion of a particle:

 mass

 position 

 velocity

 force                acting on the particle

 force      generally depends on position and velocity 

Particle Quantities
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 quantities are considered at discrete time points

 particle simulations are concerned with the computation 

of unknown future particle quantities 

using known current information 

Particle Motion
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 Newton’s Second Law, Newton's motion 
equation, motion equation of a particle

 the force acting on an object is equal to 
the rate of change of its momentum

 constant mass

Governing Equation
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 is an ordinary differential equation ODE

 describes the behavior of       in terms of its 
derivatives with respect to time

 numerical integration can be employed to 
numerically solve the ODE, i.e. to approximate 
the unknown function  

Governing Equation
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 initial value problem of second order

 second-order ODEs can be rewritten as a 
system of two coupled equations of first order

 initial value problem of first order

Governing Equation
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 functions             represent the particle motion

 initial values are given 

 first-order differential equations are given

 the functions and their first derivatives are known at

 how to compute 

Initial Value Problem 
of First Order
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 generally depend on positions and velocities

 friction / fluid viscosity depend on velocities

 spring forces, shear, stretch depend on positions

 contact handling forces depend 
on positions and velocities

 can be arbitrarily expensive to compute

 consider one particle (particle system) or 
sets of particles (deformables, fluids)

 require additional effort, e.g., contact handling forces
 detect collisions of particles with obstacles 

 compute penalty force from penetration depth

Forces
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Finite Differences

 Taylor-series approximation

 continuous ODEs are replaced with 
discrete finite-difference equations FDEs

O(h2) – truncation or discretization error

O(h) – error order of, e.g., a scheme
that employs such approximation
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 polynomial fitting (line fitting in case of one sample)

which results in

Finite Differences
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 initialize

 numerical integration of position and velocity 

Euler Method
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 Euler step from      to

 Euler step from             to

 the position update depends on velocity 

 the velocity update depends on position and velocity

Coupled Equations



University of Freiburg – Computer Science Department – Computer Graphics - 20

 discretization error is defined as the difference 
between the solution of the ODE and the 
solution of the FDE

 the FDE is consistent, if the discretization error 
vanishes if the time step h approaches zero 

 the FDE is stable, if previously introduced errors 
(discretization, round-off) do not grow 
within a simulation step

 the FDE is convergent, if the solution of the FDE 
approaches the solution of the ODE 

Accuracy and Stability
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 although the discretization error is diminished 
by smaller time steps in consistent schemes, 
the discretization error is introduced in each 
step of the FD scheme

 if previously introduced discretization errors 
are not amplified by the FD scheme, then it 
is stable

 consistent and stable schemes are convergent 

Accuracy and Stability
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 if stability is influenced by the time step, 
the FD scheme is conditionally stable

 if the FD scheme is stable or unstable for 
arbitrary time steps, it is unconditionally 
stable or unstable

 ODE, FDE and the parameters influence
the stability of a system

 schemes with improved stability 
work with larger time steps

Stability
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 larger time steps typically speed up a simulation

 smaller time steps can improve the stability 

 arbitrarily small time steps are not feasible 
due to round-off errors

 for larger time steps, 
the error is dominated by the discretization error

 for smaller time steps, 
the error is dominated by round-off errors

 performance of an FD scheme is trade-off 
between error order in terms of the time 
step and computing complexity

Time Step
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Second-Order Runge-Kutta
Midpoint Method 

Euler

• compute the derivative at t0

• approximate f (t0 +h)
using the derivative at t0

error

Midpoint Method

• compute the derivative at t0

• compute f(t0 +h/2)

• compute  the derivative at t0 +h/2

• approximate f (t0 +h)
using the derivative at t0 +h/2

error
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 compute x’(t)

 compute v’(t)

 compute x’(t+h/2)

 compute v’(t+h/2)
with x(t+h/2) and v(t+h/2)

 compute x(t+h) with x’(t+h/2)

 compute v(t+h) with v’(t+h/2)

Second-Order Runge-Kutta 
Midpoint Method
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 compute x’(t)

 compute v’(t)

 compute x’(t+h)

 compute v’(t+h)

 c. x(t+h) with x’(t) and x’(t+h)

 c. v(t+h) with v’(t) and v’(t+h)

Second-Order Runge-Kutta
Heun
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 compute x’(t)

 compute v’(t)

 compute x’(t+3h/4)

 compute v’(t+3h/4)
with x(t+3h/4) and v(t+3h/4)

 c. x(t+h) with x’(t) and x’(t+3h/4)

 c. v(t+h) with v’(t) and v’(t+3h/4)

Second-Order Runge-Kutta 
Ralston Method
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 compute f’(t0)   (1)
 compute f(t0+h/2)

with f (t0) and f’(t0)
 compute f’(t0+h/2) (2)
 compute f(t0+h/2)

with f (t0) and f’(t0+h/2)
 compute f’(t0+h/2) (3)
 compute f(t0+h)

with f (t0) and f’(t0+h/2)
 compute f’(t0+h) (4)
 compute f(t0+h) with f (t0) and a 

weighted average of all derivatives (1) – (4)

Fourth-Order Runge-Kutta
Runge

error
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 four derivative computations per time step

 error 

Fourth-Order Runge-Kutta
Runge
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 four derivative computations per time step

 error

Fourth-Order Runge-Kutta
Kutta
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 similar performance if the time step for RK 2 
is twice the time step for Euler

 Does RK allow for faster simulations than Euler? 

Performance

Euler Runge-Kutta

• one computation of the
derivative per time step

• error 

• two (four) computations of 
the derivative per time step

• error 

• allows larger time steps
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 Euler

 one function evaluation

 force computation

 position and velocity update

 Runge-Kutta

 multiple function evaluations 

 computation of auxiliary forces, positions, velocities
 once for second order

 three times for fourth order

 position and velocity update 

Implementation
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 predict a value from current (and previous) derivatives
 correct the predicted value with its derivative
 second-order Adams-Bashforth predictor

 second-order Adams-Moulton corrector

 based on Lagrange polynomials or Taylor approximations
 can be efficiently implemented with

two derivative computations per simulation step
 requires values at previous time steps, 

not self-starting

Predictor-Corrector Methods
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Adams-Bashforth Predictors
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Adams-Moulton Correctors
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explicit Euler implicit Euler

- one unknown per equation - system of algebraic equations
- direct calculation of x(t+h) with many unknowns

and v(t+h)   - simultaneous computation of
- non-linear equations have x(t+h) and v(t+h)

no effect on the approach - solution of a system of equations
- can handle non-analytical, - non-linear equations are commonly

procedural forces linearized to get a system of 
linear equations

Explicit and Implicit Integration
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 one-dimensional scalar field

 multi-dimensional scalar field

 gradient

 nabla, del

Linearization of Scalar Functions
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 multi-dimensional vector field

 Jacobi matrix

Linearization of Vector Fields
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 general form

 explicit Euler

 implicit Euler

 Crank Nicolson

Implicit Integration
Theta Scheme
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 rewriting the problem for 

 force linearization

 solving a linear system for

Theta Scheme
Example Implementation

In this example,
force F depends on x, 
not on v.
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 linear system

 gradient of a function

with

 iterative solution for with initial value

Theta Scheme
Conjugate Gradient
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 v0 = v(t)
 direction d
 residual r
 step size 
 v(t+h) = vi

 A is symmetric, positive-definite
 -r0, -d0 gradient of function f
 di, dj are conjugate, 

i.e.  di
T A dj = 0

 ri = 0 in maximal n steps, 
if v has n components

Conjugate Gradient Method
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Euler-Cromer (semi-implicit)

Euler-Cromer

...

computeForces(); //F(t)

velocityEuler(h); //v=v(t+h)=v(t)+ha(t)

positionEuler(h); //x=x(t+h)=x(t)+hv(t+h)

...

Euler

...

computeForces(); //F(t)

positionEuler(h);   //x=x(t+h)=x(t)+hv(t)

velocityEuler(h);   //v=v(t+h)=v(t)+ha(t)

...
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 error

 can generally handle larger time steps h
compared to Euler

Leap Frog

Leap Frog

initV() // v(0) = v(0) – (h/2)a(0)

...

computeForces(); //F(t)

velocityEuler(h); //v=v(t+h)=v(t)+ha(t)

positionEuler(h); //x=x(t+h)=x(t)+hv(t+h)

...

Euler

...

computeForces(); //F(t)

positionEuler(h);   //x=x(t+h)=x(t)+hv(t)

velocityEuler(h);   //v=v(t+h)=v(t)+ha(t)

...
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 function       represents the particle motion

 initial values are given 

 second-order differential equation is given

 at time     , the function and their derivatives are known

 how to compute 

Initial Value Problem 
of Second Order
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integration methods for integration methods for
first-order ODEs second-order ODE

(Newton’s motion equation)

Euler, Heun, Ralston, Verlet, velocity Verlet,

Midpoint method, Beeman, Gear,

4th order Runge-Kutta Euler-Cromer, Leap-Frog

Overview of 
Integration Schemes
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 Taylor approximations of           and

 adding both approximations

Verlet
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 independent of velocity 

 one derivative computation per time step

 efficient to compute, comparatively accurate 

 third-order in the position

 if required, velocity can be computed, e.g. using

 velocity is commonly required 
for collision response or damping

Verlet
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 one force (derivative) computation per time step

 second-order accuracy in position and velocity

 equivalent to

Velocity Verlet

Ft+h is computed 
using xt+h, vt+h
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 one force (derivative) computation per time step

 efficient to compute

 third-order accuracy in position and velocity

 is computed using

Beeman
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position   velocity   acceleration

Gear Integration
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Gear Integration
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Gear - Prediction
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 error

 error correction coefficients

Gear - Correction

k = 0 k = 1 k = 2 k = 3 k = 4 k =  5

20

3

360

251
1

18

11

6

1

60

1



University of Freiburg – Computer Science Department – Computer Graphics - 59

 initialization

 integration

 prediction

 error estimation

 correction

Gear - Implementation
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method force comp. error order error order

per time step position velocity

Euler 1 1 1

RK 2nd order 2 2 2

RK 4th order 4 4 4

Verlet 1 3 1

Velocity Verlet 1 2 2

Beeman 1 3 3

Comparison – Explicit Schemes
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Comparison – Explicit Schemes

 methods for first-order ODEs
 accuracy corresponds to computing complexity
 position and velocity have the same error order

 methods for second-order ODEs
 improved accuracy with minimal computing complexity
 error order might differ for position and velocity

 implicit methods cannot be compared this way
 do not only compute forces (derivatives)
 commonly require to solve a linear system
 improved stability even for low error orders,

implicit Euler with error order one can be unconditionally 
stable, e. g. for harmonic oscillators (springs)
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Advantages / Disadvantages

 explicit methods
 simple to set up and program
 fast computation per integration step
 suitable for parallel architectures
 small time steps required for stability
 many computing steps required for a given time interval t

 implicit methods
 stability is maintained for large time steps
 require less steps for a given interval t
 large time steps can cause large truncation errors
 complicate to set up
 less flexible, problems with non-analytical forces
 large computing time per integration step
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Advantages / Disadvantages

 predictor-corrector methods
 not self-starting
 have to be re-initialized in case of discontinuities,

e. g. due to collision response

 in general, implicit methods are more robust (stable) 
compared to explicit methods
 if an explicit scheme is not conditionally or unconditionally 

stable it cannot be used regardless of its efficiency

 explicit methods can be computed efficiently 
which is essential if frequent updates are required
 if an implicit scheme cannot be computed at 

interactive rates, it cannot be used in interactive 
applications regardless of the time step
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Summary

 motion equation for a mass point
 second-order differential equation
 coupled system of first-order differential equations

 numerical integration
 initial values xt and vt

 approximate integration of v and x through time with time step h

 integration schemes
 Euler, Runge-Kutta 2nd , Runge-Kutta 4th

 Crank-Nicolson, implicit Euler, Euler-Cromer, Leap-Frog
 Gear, Verlet, velocity Verlet, Beeman

 trade-off between accuracy and computing cost
 goal: maximizing the ratio of time step and computing cost


