Simulation in Computer Graphics

Particles

Matthias Teschner

Computer Science Department
University of Freiburg

Albert-Ludwigs-Universitit Freiburg

UNI

FREIBURG

Outline

= introduction

= particle motion

= finite differences

= system of first order ODEs
= second order ODE

University of Freiburg — Computer Science Department — Computer Graphics - 2

Motivation

= sets of particles (particle systems)
are used to model time-dependent
phenomena such as snow, fire, smoke

University of Freiburg — Computer Science Department — Computer Graphics - 3

Motivation

= particles are characterized by mass, position and velocity
= forces determine the dynamic behavior
= inter-particle forces are neglected

= particles can carry arbitrary attributes for rendering
purposes, e.g., shape, color, transparency, life time

¢ 0 x A TR % Pt 20 5%
> ¢

H e L Y ot 2 . - o 1
f SR gl 2T 7 e ~RANe » ¢~ & R “
- $ T G SR S, Tt A O S BRI EIRE . 37

FREIBURG

Kolb, Latta, Rezk-Salama =
=

University of Freiburg — Computer Science Department — Computer Graphics - 4

Demo

750,000 particles in XNA,
http://www.youtube.com/watch?v=CyAZ2Y7nOTw

University of Freiburg — Computer Science Department — Computer Graphics - 5

Outline

= introduction

= particle motion

= finite differences

= system of first order ODEs
= second order ODE

University of Freiburg — Computer Science Department — Computer Graphics - 6

Particle Quantities

= quantities relevant for the motion of a particle:
= Mass m € R
= position x € R?
« velocity v eRS
= force F € R3 acting on the particle
=« force F' generally depends on position and velocity

v

X

F

University of Freiburg — Computer Science Department — Computer Graphics - 7

Particle Motion

= quantities are considered at discrete time points
v, Vith Vit2h
Xtk Xt4+2h
Xt
Fiin Fiyon
Fy

= particle simulations are concerned with the computation
of unknown future particle quantities x5, viin

using known current information x;, v;, F,

University of Freiburg — Computer Science Department — Computer Graphics - 8

Governing Equation

= Newton’s Second Law, Newton's motion
equation, motion equation of a particle

= the force acting on an object is equal to
the rate of change of its momentum

. d I dv
Fy = & (mve) = G ve +mG
m constant mass
o dve d*x
Fi=m ar — M=ge

University of Freiburg — Computer Science Department — Computer Graphics - 9

Governing Equation

« F, =meX isan ordinary differential equation ODE

= describes the behavior of x; in terms of its
derivatives with respect to time

= numerical integration can be employed to
numerically solve the ODE, i.e. to approximate
the unknown function x;

University of Freiburg — Computer Science Department — Computer Graphics - 10

Governing Equation

= initial value problem of second order

dQXt _ 1 — dXtO —

= second-order ODEs can be rewritten as a
system of two coupled equations of first order

= initial value problem of first order

dx

dtt — Vi Xto = X0
th _ 1 —

i = mEt Vio = VO

University of Freiburg — Computer Science Department — Computer Graphics - 11

Initial Value Problem
of First Order

= functions x;, v; represent the particle motion
= initial values are given x;,, vy,

= first-order differential equations are given

dXt . th _ i
at Vit g = mEt

s the functions and their first derivatives are known at tg

= how to compute Xy +n, Vi, in

X Vv "
P = - e

: ' - ' -

I I
te to+h t to to+h t

University of Freiburg — Computer Science Department — Computer Graphics - 12

Forces

= generally depend on positions and velocities
= friction / fluid viscosity depend on velocities
= spring forces, shear, stretch depend on positions
= contact handling forces depend
on positions and velocities
= can be arbitrarily expensive to compute

= consider one particle (particle system) or
sets of particles (deformables, fluids)

= require additional effort, e.g., contact handling forces
= detect collisions of particles with obstacles
= compute penalty force from penetration depth

University of Freiburg — Computer Science Department — Computer Graphics - 13

Outline

= introduction

= particle motion

= finite differences

= system of first order ODEs
= second order ODE

University of Freiburg — Computer Science Department — Computer Graphics - 14

Finite Differences

= Taylor-series approximation

Xt4+h = X¢ -+ %h -+ O(hQ) O(h?) — truncation or discretization error

dxi _ Xt4h—Xt _|_ O(h) O(h) —error order of, e.g., a scheme

dt h

= continuous ODEs are replaced with
discrete finite-difference equations FDEs

dx; __ Xtth—Xt _
o — Vit = 7 — V¢

dve _ 1 Vith=Ve __ 1
dt mFt = h o mFt

that employs such approximation

University of Freiburg — Computer Science Department — Computer Graphics - 15

Finite Differences

= polynomial fitting (line fitting in case of one sample)
X¢ :at—l—b
:>d§it—a = b =x;, — &ty

Xt+h — dxt (t -+ h) -+ Xt — dxtt
which results in

G = T+ O

University of Freiburg — Computer Science Department — Computer Graphics - 16

Outline

= introduction
= particle motion
= finite differences

= system of first order ODEs
= explicit approaches
= predictor corrector approaches
= implicit approaches

= second order ODE

University of Freiburg — Computer Science Department — Computer Graphics - 17

Euler Method

s initialize x¢, = xg, V¢, = Vo, Fyy, m, h

= numerical integration of position and velocity

Xto+h — Xtg -+ h).(to = Xto -+ thO

. 1
Vio+h = Vi, -+ thO Vio -+ hEFtO

University of Freiburg — Computer Science Department — Computer Graphics - 18

Coupled Equations

= Eulerstep from tg to to+ A
Xtg+h = Xt, + hvy,

1
Vig+h = Vi T hEFto (Xtov Vto)

= Euler step from tyo + h to tg + 2h

Xto+4+2h = Xtg4+h + MVig4h

1
Vio+2h = Vig+h T hEFto-l—h(Xto-l—ha Vt0-|-h)

= the position update depends on velocity
= the velocity update depends on position and velocity

University of Freiburg — Computer Science Department — Computer Graphics - 19

Accuracy and Stability

= discretization error is defined as the difference
between the solution of the ODE and the
solution of the FDE

= the FDE is consistent, if the discretization error
vanishes if the time step h approaches zero

= the FDE is stable, if previously introduced errors
(discretization, round-off) do not grow
within a simulation step

= the FDE is convergent, if the solution of the FDE
approaches the solution of the ODE

University of Freiburg — Computer Science Department — Computer Graphics - 20

Accuracy and Stability

= although the discretization error is diminished
by smaller time steps in consistent schemes,
the discretization error is introduced in each
step of the FD scheme

= if previously introduced discretization errors
are not amplified by the FD scheme, then it
is stable

= consistent and stable schemes are convergent

University of Freiburg — Computer Science Department — Computer Graphics - 21

Stability

» if stability is influenced by the time step,
the FD scheme is conditionally stable

= ifthe FD scheme is stable or unstable for
arbitrary time steps, it is unconditionally
stable or unstable

= ODE, FDE and the parameters influence
the stability of a system

= schemes with improved stability
work with larger time steps

University of Freiburg — Computer Science Department — Computer Graphics - 22

Time Step

larger time steps typically speed up a simulation
smaller time steps can improve the stability

arbitrarily small time steps are not feasible
due to round-off errors

= for larger time steps,
the error is dominated by the discretization error

= for smaller time steps,
the error is dominated by round-off errors

performance of an FD scheme is trade-off
between error order in terms of the time
step and computing complexity

University of Freiburg — Computer Science Department — Computer Graphics - 23

Second-Order Runge-Kutta
Midpoint Method

Euler Midpoint Method
@) ""yerror O(h?) /(@) y error O(h3)

to to+ih to+h

e compute the derivative at t,
e compute f(t, +h/2)

e compute the derivative at ¢, e compute the derivative at t, +h/2
e approximate f (t, +h) e approximate f (t, +h)
using the derivative at t, using the derivative at t, +h/2

University of Freiburg — Computer Science Department — Computer Graphics - 24

Second-Order Runge-Kutta

Midpoint Method

X = Vi ‘.’-xt,vt — %Fxt,vt
= compute X'(t) ky
= compute V'(t) I

= compute X'(t+h/2)

= compute V'(t+h/2)
with x(t+h/2) and v(t+h/2) '2

= compute X(t+h) with X' (t+h/2) Xt+n
= compute v(t+h) with V'(t+h/2) Viin

Xy

th y Vi

X + 14 Q

2
th +ki1 2 ko
x¢ + hka

Vi + hlz

University of Freiburg — Computer Science Department — Computer Graphics - 25

Second-Order Runge-Kutta

f t r N
Heun K >
- _ o
=Vt Vxi,ve — EFxt,vt
= compute X'(t) ki = x,
= compute V/(t) L = S,
= compute X'(t+h) ke = x+Lh
I, = th+k1h,k2

= compute V'(t+h)

= C.X(t+h) with X'(t) and X'(t+h) *tt+h
= C.V(t+h) with V'(t) and V'(t+h) v,

1 1
= Xt h(—k1 + —kg)

2 2
1 1
= Vit h(ill + 512)

University of Freiburg — Computer Science Department — Computer Graphics - 26

Second-Order Runge-Kutta

Ralston Method

X = Vy Vi, v, = %Fxt,vt

compute X'(t) ki, = x;

compute V'(t) Ii = vx.,v,

compute X'(t+3h/4) ke = %+ 11217,
compute V'(t+3h/4) b = Yy h fhe

with x(t+3h/4) and v(t+3h/4) | 2

¢, x(t+h) with X (t) and X (t#3h/a) <+t = XeThghk T gke)

c.V(t+h) with v'(t) and V'(t+3h/4) Vitn

1 2
v + h(gh + 512)

University of Freiburg — Computer Science Department — Computer Graphics - 27

Fourth-Order Runge-Kutta
Runge

compute f'(t,) (1)
compute f(t,+h/2) .
with f (t,) and f'(t,) f(®) L error O(h?)
compute f'(t,+h/2) (2) =

compute f(t,+h/2) — 4

with f (t,) and f(t,+h/2) 1 t
compute f'(t,+h/2) (3) to fo + Lh o Th
compute f(t,+h)

with f (t,) and f'(t,+h/2)

compute f'(t,+h) (4)

compute f(t,+h) with f (t,) and a

weighted average of all derivatives (1) — (4) __3_

University of Freiburg — Computer Science Department — Computer Graphics - 28

Fourth-Order Runge-Kutta
Runge

« four derivative computations per time step

= error O(h?)
1

kl —).(t k3 — Xt —I— 12 5]1
l1 — th,vt .
, I3 = Vi ikoinks
kQ —).(t —|—11§h k4 — }.(t —I-lgh
].2 — th+k1%h;k2 14 — th+k3h,k4
1
Xirh = X¢+ hé(k1 + 2ks + 2ks + ky)
1
Vith — Vi + hg(ll + 212 + 213 —+ 14)

University of Freiburg — Computer Science Department — Computer Graphics - 29

Fourth-Order Runge-Kutta
Kutta

« four derivative computations per time step
= error O(h?)

— 1 3. .2
ki = x ks = X+ (==L + o) =h
: 2 2773
11 — Vx,.vy] o .
) 3 7 Vxit(—iki+3ke)2h ks
ko = Xt—l—llgh ky, = x;+ (11 — 15 —|—13)h
b = Veikilhk li = Vit(ki—kotks)hks
1
Xt+h — Xy + hg(kl + 3k2 -+ 3k3 -+ k4)
1
Vigh = Vit hg(h + 3ly + 313 + 1))

University of Freiburg — Computer Science Department — Computer Graphics - 30

Performance

Euler

Runge-Kutta

e one computation of the
derivative per time step

e error O(h?)

e two (four) computations of
the derivative per time step

e error O(h3), O(h®)

e allows larger time steps

= similar performance if the time step for RK 2
is twice the time step for Euler

= Does RK allow for faster simulations than Euler?

University of Freiburg — Computer Science Department — Computer Graphics - 31

Implementation

= Euler
= one function evaluation
= force computation
= position and velocity update

= Runge-Kutta
= multiple function evaluations

= computation of auxiliary forces, positions, velocities
= once for second order
= three times for fourth order

= position and velocity update

University of Freiburg — Computer Science Department — Computer Graphics - 32

Outline

= introduction
= particle motion
= finite differences

= system of first order ODEs
= explicit approaches
= predictor corrector approaches
= implicit approaches

= second order ODE

University of Freiburg — Computer Science Department — Computer Graphics - 33

Predictor-Corrector Methods

» predict a value from current (and previous) derivatives
= correct the predicted value with its derivative
= second-order Adams-Bashforth predictor

Ji4n = Jt + h%(?)ft — fizn) + O(h3)
= second-order Adams-Moulton corrector

fern = fo +h5 B3 frn — fr) + O(h?)
= based on Lagrange polynomials or Taylor approximations
= can be efficiently implemented with

two derivative computations per simulation step

= requires values at previous time steps,
not self-starting - -

University of Freiburg — Computer Science Department — Computer Graphics - 34

Adams-Bashforth Predictors

ftan

ftsn

ft+n

ften

ft+n

fi + hfr + O(h?)

fot hg(3fi = fin) +O0)

fi + h%(%ﬁ —16f1—n 4+ 5f—a1) + O(hY)

fr + h%(55ﬁ —59fsp + 37 fi—an — 9fi_an) + O(h®)

1 :
Ji + h%(lgolft — 2774 fr—p + 2616 fr_op, — 1274 f1_3p + 251 fr_an)

+0(hY)

University of Freiburg — Computer Science Department — Computer Graphics - 35

Adams-Moulton Correctors

Jt+n = ft—l—thh—l—O(hQ)

Jien = Ji+ h%(ft+h + fi) + O(h?)

1 . . .
Jien = fi + hﬁ(5ft+h +8fr — fi—n) + O(h?)
1 . . . :
fton = fi + hﬁ(gft—l—h +19f, — 5fi—n + fi—on) + O(R°)
1 . : : . .
fton = [+ h%(251ft+h + 646 f; — 264 f;—p, + 106 fr—op, — 19fr_3p)
+0(hY)

University of Freiburg — Computer Science Department — Computer Graphics - 36

Outline

= introduction
= particle motion
= finite differences

= system of first order ODEs
= explicit approaches
= predictor corrector approaches
= implicit approaches

= second order ODE

University of Freiburg — Computer Science Department — Computer Graphics - 38

Explicit and Implicit Integration

explicit Euler
Xi4h = X¢ + hvy

1
Vt—|—h — V¢ —I- hEFt

- one unknown per equation

- direct calculation of x(t+h)
and v(t+h)

- non-linear equations have
no effect on the approach

- can handle non-analytical,
procedural forces

implicit Euler

Xith = Xt + hvigp

1
Vieh = Ve +h=—Fip

- system of algebraic equations
with many unknowns

- simultaneous computation of
X(t+h) and v(t+h)

- solution of a system of equations

- non-linear equations are commonly
linearized to get a system of
linear equations

University of Freiburg — Computer Science Department — Computer Graphics - 39

Linearization of Scalar Functions

= one-dimensional scalar field
foih = fuo + hfs + O(h?)

= multi-dimensional scalar field
fx+n = fx +h-gradfx + O(|[h[]?)

= gradient

T
Ofx Ofx O fx
gradfx:VfX: (aglaaiza'“aagn)

= nabla, del
v_ (o _o 9 *
= \ Bz, Bz’ By

University of Freiburg — Computer Science Department — Computer Graphics - 40

Linearization of Vector Fields

= Mmulti-dimensional vector field
Fxin =Fx +Jr h+ O(]h?)

= Jacobi matrix

OF1 x
gradT Fl,x / Oz,
J) - .
Fva: T Ox '.]_"-. T X
grad™ Fy, x \ OFm x
3361

University of Freiburg — Computer Science Department — Computer Graphics - 41

OF1 x
ox,

8Fm,x
oz,

)
/

Implicit Integration
Theta Scheme

= general form
Xt+h — Xt + h((l — Q)Vt + Qvt+h)

Vitn = vi +h((1—0)Er 4 9Tt

= explicit Euler 6=0
= implicit Euler 6=1
= Crank Nicolson 6 =0.5

University of Freiburg — Computer Science Department — Computer Graphics - 42

Theta Scheme
Example Implementation

= rewriting the problem for 8 =0.5
In this example,

_ h
MViyp = MV T+ 5 (Fxt + Fxt—l—h) force F depends on x,
not onv.

s force linearization

- OF « h
FXt—|—h — Fxt—l—%(vt+vt+h) ~ FXt =+ 3xt 9 (Vt + Vt-l—h)
= solving a linear system for vis
h2 OF4 - OF « h2
|:mI_4. 8xt .Vt+hwm'vt—|—h'FXt+ 8xt.4vt

University of Freiburg — Computer Science Department — Computer Graphics - 43

Theta Scheme
Conjugate Gradient

= linear system A-v=>b
» gradient of a function Vf(v)=A-v—-Db

s iterative solution for v with initial value vg

Vitl = Vy + Q- W(Vf(VZ))

University of Freiburg — Computer Science Department — Computer Graphics - 44

Conjugate Gradient Method

=V, =V(t) do=rg=b—A-vg
= direction d
. T
= residual r o = ok
= step size a 7’

= Ais symmetric, positive-definite . | — ¢, — 0 Ad;

= -1, -d, gradient of function f

= d, d;are conjugate, eI v
l.e. d,-T A dj =0 dit1 =rit1 + rir;,

(2

= =0 in maximal n steps,
if vhas n components - -

University of Freiburg — Computer Science Department — Computer Graphics - 45

Euler-Cromer (semi-implicit)

1
Vt-l—h — V¢ —I— haFt

Xith = X¢ + hviyy

Euler Euler-Cromer

.c.(.)mputeForces(); //F(t) 'c“omputeForces(); //F(t)

positionEuler(h); //x=x(t+h)=x(t)+hv(t) velocityEuler(h); //v=v(t+h)=v(t)+ha(t)
velocityEuler(h); //v=v(t+h)=v(t)+ha(t) positionEuler(h); //x=x(t+h)=x(t)+hv(t+h)

University of Freiburg — Computer Science Department — Computer Graphics - 46

Leap Frog

1 1
Viph =V HhoFe=vi 0 +hipFu oy,
= error O(h3)

= can generally handle larger time steps h

compared to Euler
Euler Leap Frog

initv() // v(0) = v(0) = (h/2)a(0)

.c-(.)mputeForces(); //F(t) .c'(.)mputeForces(); //F(t)
positionEuler(h); //x=x(t+h)=x(t)+hv(t) velocityEuler(h); //v=v(t+h)=v(t)+ha(t)
velocityEuler(h); //v=v(t+h)=v(t)+ha(t positionEuler(h); //x=x(t+h)=x(t)+hv(t+h)

~—

University of Freiburg — Computer Science Department — Computer Graphics - 47

Outline

= introduction

= particle motion

= finite differences

= system of first order ODEs
= second order ODE

University of Freiburg — Computer Science Department — Computer Graphics - 48

Initial Value Problem
of Second Order

= function x; represents the particle motion

= initial values are given xy,, (X,)

= second-order differential equation is given
d;t}ét =X = %Ft

= at time ty, the function and their derivatives are known
= how to compute X¢y+h, (Xtg+h)

University of Freiburg — Computer Science Department — Computer Graphics - 49

Overview of
Integration Schemes

integration methods for integration methods for
first-order ODEs second-order ODE
(Newton’s motion equation)

Euler, Heun, Ralston, Verlet, velocity Verlet,
Midpoint method, Beeman, Gear,
At order Runge-Kutta Euler-Cromer, Leap-Frog

University of Freiburg — Computer Science Department — Computer Graphics - 50

Verlet

= Taylor approximations of x;1, and x;_p

Xi4h = X¢ + hvy + h Ft i (3) + O(h%)

Xip =Xy — hvy + B Ee 22588 4 o(pt)

= adding both approximations

Xiph = 2X¢ — X¢—p T hQ% + O(h*)

University of Freiburg — Computer Science Department — Computer Graphics - 51

Verlet

= independent of velocity

= one derivative computation per time step

= efficient to compute, comparatively accurate

= third-order in the position

= if required, velocity can be computed, e.g. using

Vipn = —H5—= + O(h)

= velocity is commonly required
for collision response or damping

University of Freiburg — Computer Science Department — Computer Graphics - 52

Velocity Verlet

= one force (derivative) computation per time step
= second-order accuracy in position and velocity

Xein = X; + hvy + 2 E2 4 O(h?)

— h (Fy | Fiqn 3 F... is computed
Vt+h = Vi —I_ - (m —l_ m) —I_ O(h) UtSihﬂg Xiehr Vish
equivalent to n h ¥y
L V h — Vt S
3 2m
Xt+h = Xt th_l_ﬁ
h Fiip
Vith = Viph + o5

University of Freiburg — Computer Science Department — Computer Graphics - 53

Beeman

= one force (derivative) computation per time step

= efficient to compute

= third-order accuracy in position and velocity
Xiih = X¢ + hvy + h? (2& — 2 Ft—h) + O(h%)

3 m 6 m

Vith :Vt—|—h (%% + 2F; 112 F;h) +O(h4)

3 m

» F,, iscomputed using x;1p,viin

University of Freiburg — Computer Science Department — Computer Graphics - 54

Gear Integration

position velocity acceleration

N /

xV o xP o %P s x(P g x5
! i T R R ot s S

Xt_|_h:Xt—|— 1 h+ 31
rngh:r?—l—r%—l—r?—krf’—krf—l—r?—l—...

k — dkxt . hk
Ty = ~qik k!

University of Freiburg — Computer Science Department — Computer Graphics - 55

Gear Integration

Xt+h
Y'ith

1
hXEJr)h

Fiih

h? @)
2 t+h

Yiih

V0 x® @ @)

= xt+—h+—h2+—h3+—h4+—h5

3! 4! 5!
= rg—l—r%—krfqtrf%—rf%—r?%—...

ORI ne %

. (1) X4 2 3
= hx; ' +h—— h+h2lh+h3'h+h4

= r; +2r7 + 3r] + 4rf + 512 +

3 4 5
- 9t 2 1! 2 9l

= r; +3r] +6r} + 10r) +

University of Freiburg — Computer Science Department — Computer Graphics - 56

|h4+

Gear - Prediction

Xpih = Topp = T¢ +T +17 +17 + 15 +17
hviip = r%_i_h = r; +2r7 + 3r) +4r} + 5r?
h; F;:h = rf+h = r; 4+ 3r} + 6r} + 10r?
rirh = 1’ +4r) +10r)
rf+h = r} +5r)
r?+h = rt5

University of Freiburg — Computer Science Department — Computer Graphics - 57

Gear - Correction

m Eerror 2
k k
ry, = Trp,— Crerroryyy,

= error correction coefficients

k=0 k=1 k=2 k=3 k=4 k=5
3 | & [, | 1| 1 | t
20 360 18 6 60

University of Freiburg — Computer Science Department — Computer Graphics - 58

Gear - Implementation

e ey . . 2
= initialization rd = xg ri = Tol
I'%:V()h r%:r%:rg:o

= integration ry,, =1} +... 4717

= prediction)

L r; , =
= error estimation t+h
= correction 2 Fiin b?

€eITor¢1p — rt—l—h — T 9l

k k
vy, =1, — Crerroryyy

University of Freiburg — Computer Science Department — Computer Graphics - 59

Comparison — Explicit Schemes

method force comp. error order |error order
per time step position velocity
Euler 1 1 1
RK 2n9 order 2 2 2
RK 4th order 4 4 4
Verlet 1 3 1
Velocity Verlet 1 2 2
Beeman 1 3 3

University of Freiburg — Computer Science Department — Computer Graphics - 60

Comparison — Explicit Schemes

= methods for first-order ODEs
= accuracy corresponds to computing complexity
= position and velocity have the same error order
= methods for second-order ODEs
= improved accuracy with minimal computing complexity
= error order might differ for position and velocity
= implicit methods cannot be compared this way
=« do not only compute forces (derivatives)

= commonly require to solve a linear system

= improved stability even for low error orders,
implicit Euler with error order one can be unconditionally
stable, e. g. for harmonic oscillators (springs)

University of Freiburg — Computer Science Department — Computer Graphics - 61

Advantages / Disadvantages

= explicit methods
= simple to set up and program
= fast computation per integration step
= suitable for parallel architectures
= small time steps required for stability
= many computing steps required for a given time interval t
= implicit methods
= stability is maintained for large time steps
= require less steps for a given interval t
= large time steps can cause large truncation errors
= complicate to set up
= |ess flexible, problems with non-analytical forces
= large computing time per integration step

University of Freiburg — Computer Science Department — Computer Graphics - 62

Advantages / Disadvantages

= predictor-corrector methods

= not self-starting
= have to be re-initialized in case of discontinuities,

e. g. due to collision response
= in general, implicit methods are more robust (stable)

compared to explicit methods
= if an explicit scheme is not conditionally or unconditionally
stable it cannot be used regardless of its efficiency

= explicit methods can be computed efficiently

which is essential if frequent updates are required
= if an implicit scheme cannot be computed at
interactive rates, it cannot be used in interactive
applications regardless of the time step

University of Freiburg — Computer Science Department — Computer Graphics - 63

Summary

= motion equation for a mass point

= second-order differential equation

= coupled system of first-order differential equations
= numerical integration

= initial values x, and v,

= approximate integration of v and x through time with time step h
= integration schemes

= Euler, Runge-Kutta 2", Runge-Kutta 4t

= Crank-Nicolson, implicit Euler, Euler-Cromer, Leap-Frog

= Gear, Verlet, velocity Verlet, Beeman

= trade-off between accuracy and computing cost
= goal: maximizing the ratio of time step and computing cost

University of Freiburg — Computer Science Department — Computer Graphics - 64

