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 sets of particles (particle systems) 
are used to model time-dependent 
phenomena such as snow, fire, smoke

Motivation
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 particles are characterized by mass, position and velocity

 forces determine the dynamic behavior

 inter-particle forces are neglected

 particles can carry arbitrary attributes for rendering 
purposes, e.g., shape, color, transparency, life time 

Motivation

Kolb, Latta, Rezk-Salama
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Demo

750,000 particles in XNA, 
http://www.youtube.com/watch?v=CyAZ2Y7nOTw
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 quantities relevant for the motion of a particle:

 mass

 position 

 velocity

 force                acting on the particle

 force      generally depends on position and velocity 

Particle Quantities
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 quantities are considered at discrete time points

 particle simulations are concerned with the computation 

of unknown future particle quantities 

using known current information 

Particle Motion
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 Newton’s Second Law, Newton's motion 
equation, motion equation of a particle

 the force acting on an object is equal to 
the rate of change of its momentum

 constant mass

Governing Equation
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 is an ordinary differential equation ODE

 describes the behavior of       in terms of its 
derivatives with respect to time

 numerical integration can be employed to 
numerically solve the ODE, i.e. to approximate 
the unknown function  

Governing Equation
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 initial value problem of second order

 second-order ODEs can be rewritten as a 
system of two coupled equations of first order

 initial value problem of first order

Governing Equation
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 functions             represent the particle motion

 initial values are given 

 first-order differential equations are given

 the functions and their first derivatives are known at

 how to compute 

Initial Value Problem 
of First Order
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 generally depend on positions and velocities

 friction / fluid viscosity depend on velocities

 spring forces, shear, stretch depend on positions

 contact handling forces depend 
on positions and velocities

 can be arbitrarily expensive to compute

 consider one particle (particle system) or 
sets of particles (deformables, fluids)

 require additional effort, e.g., contact handling forces
 detect collisions of particles with obstacles 

 compute penalty force from penetration depth

Forces
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Finite Differences

 Taylor-series approximation

 continuous ODEs are replaced with 
discrete finite-difference equations FDEs

O(h2) – truncation or discretization error

O(h) – error order of, e.g., a scheme
that employs such approximation
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 polynomial fitting (line fitting in case of one sample)

which results in

Finite Differences
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 initialize

 numerical integration of position and velocity 

Euler Method
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 Euler step from      to

 Euler step from             to

 the position update depends on velocity 

 the velocity update depends on position and velocity

Coupled Equations
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 discretization error is defined as the difference 
between the solution of the ODE and the 
solution of the FDE

 the FDE is consistent, if the discretization error 
vanishes if the time step h approaches zero 

 the FDE is stable, if previously introduced errors 
(discretization, round-off) do not grow 
within a simulation step

 the FDE is convergent, if the solution of the FDE 
approaches the solution of the ODE 

Accuracy and Stability
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 although the discretization error is diminished 
by smaller time steps in consistent schemes, 
the discretization error is introduced in each 
step of the FD scheme

 if previously introduced discretization errors 
are not amplified by the FD scheme, then it 
is stable

 consistent and stable schemes are convergent 

Accuracy and Stability



University of Freiburg – Computer Science Department – Computer Graphics - 22

 if stability is influenced by the time step, 
the FD scheme is conditionally stable

 if the FD scheme is stable or unstable for 
arbitrary time steps, it is unconditionally 
stable or unstable

 ODE, FDE and the parameters influence
the stability of a system

 schemes with improved stability 
work with larger time steps

Stability
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 larger time steps typically speed up a simulation

 smaller time steps can improve the stability 

 arbitrarily small time steps are not feasible 
due to round-off errors

 for larger time steps, 
the error is dominated by the discretization error

 for smaller time steps, 
the error is dominated by round-off errors

 performance of an FD scheme is trade-off 
between error order in terms of the time 
step and computing complexity

Time Step
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Second-Order Runge-Kutta
Midpoint Method 

Euler

• compute the derivative at t0

• approximate f (t0 +h)
using the derivative at t0

error

Midpoint Method

• compute the derivative at t0

• compute f(t0 +h/2)

• compute  the derivative at t0 +h/2

• approximate f (t0 +h)
using the derivative at t0 +h/2

error
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 compute x’(t)

 compute v’(t)

 compute x’(t+h/2)

 compute v’(t+h/2)
with x(t+h/2) and v(t+h/2)

 compute x(t+h) with x’(t+h/2)

 compute v(t+h) with v’(t+h/2)

Second-Order Runge-Kutta 
Midpoint Method
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 compute x’(t)

 compute v’(t)

 compute x’(t+h)

 compute v’(t+h)

 c. x(t+h) with x’(t) and x’(t+h)

 c. v(t+h) with v’(t) and v’(t+h)

Second-Order Runge-Kutta
Heun
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 compute x’(t)

 compute v’(t)

 compute x’(t+3h/4)

 compute v’(t+3h/4)
with x(t+3h/4) and v(t+3h/4)

 c. x(t+h) with x’(t) and x’(t+3h/4)

 c. v(t+h) with v’(t) and v’(t+3h/4)

Second-Order Runge-Kutta 
Ralston Method
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 compute f’(t0)   (1)
 compute f(t0+h/2)

with f (t0) and f’(t0)
 compute f’(t0+h/2) (2)
 compute f(t0+h/2)

with f (t0) and f’(t0+h/2)
 compute f’(t0+h/2) (3)
 compute f(t0+h)

with f (t0) and f’(t0+h/2)
 compute f’(t0+h) (4)
 compute f(t0+h) with f (t0) and a 

weighted average of all derivatives (1) – (4)

Fourth-Order Runge-Kutta
Runge

error
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 four derivative computations per time step

 error 

Fourth-Order Runge-Kutta
Runge
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 four derivative computations per time step

 error

Fourth-Order Runge-Kutta
Kutta
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 similar performance if the time step for RK 2 
is twice the time step for Euler

 Does RK allow for faster simulations than Euler? 

Performance

Euler Runge-Kutta

• one computation of the
derivative per time step

• error 

• two (four) computations of 
the derivative per time step

• error 

• allows larger time steps
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 Euler

 one function evaluation

 force computation

 position and velocity update

 Runge-Kutta

 multiple function evaluations 

 computation of auxiliary forces, positions, velocities
 once for second order

 three times for fourth order

 position and velocity update 

Implementation
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 predict a value from current (and previous) derivatives
 correct the predicted value with its derivative
 second-order Adams-Bashforth predictor

 second-order Adams-Moulton corrector

 based on Lagrange polynomials or Taylor approximations
 can be efficiently implemented with

two derivative computations per simulation step
 requires values at previous time steps, 

not self-starting

Predictor-Corrector Methods
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Adams-Bashforth Predictors
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Adams-Moulton Correctors
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explicit Euler implicit Euler

- one unknown per equation - system of algebraic equations
- direct calculation of x(t+h) with many unknowns

and v(t+h)   - simultaneous computation of
- non-linear equations have x(t+h) and v(t+h)

no effect on the approach - solution of a system of equations
- can handle non-analytical, - non-linear equations are commonly

procedural forces linearized to get a system of 
linear equations

Explicit and Implicit Integration
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 one-dimensional scalar field

 multi-dimensional scalar field

 gradient

 nabla, del

Linearization of Scalar Functions



University of Freiburg – Computer Science Department – Computer Graphics - 41

 multi-dimensional vector field

 Jacobi matrix

Linearization of Vector Fields
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 general form

 explicit Euler

 implicit Euler

 Crank Nicolson

Implicit Integration
Theta Scheme
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 rewriting the problem for 

 force linearization

 solving a linear system for

Theta Scheme
Example Implementation

In this example,
force F depends on x, 
not on v.
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 linear system

 gradient of a function

with

 iterative solution for with initial value

Theta Scheme
Conjugate Gradient
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 v0 = v(t)
 direction d
 residual r
 step size 
 v(t+h) = vi

 A is symmetric, positive-definite
 -r0, -d0 gradient of function f
 di, dj are conjugate, 

i.e.  di
T A dj = 0

 ri = 0 in maximal n steps, 
if v has n components

Conjugate Gradient Method
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Euler-Cromer (semi-implicit)

Euler-Cromer

...

computeForces(); //F(t)

velocityEuler(h); //v=v(t+h)=v(t)+ha(t)

positionEuler(h); //x=x(t+h)=x(t)+hv(t+h)

...

Euler

...

computeForces(); //F(t)

positionEuler(h);   //x=x(t+h)=x(t)+hv(t)

velocityEuler(h);   //v=v(t+h)=v(t)+ha(t)

...



University of Freiburg – Computer Science Department – Computer Graphics - 47

 error

 can generally handle larger time steps h
compared to Euler

Leap Frog

Leap Frog

initV() // v(0) = v(0) – (h/2)a(0)

...

computeForces(); //F(t)

velocityEuler(h); //v=v(t+h)=v(t)+ha(t)

positionEuler(h); //x=x(t+h)=x(t)+hv(t+h)

...

Euler

...

computeForces(); //F(t)

positionEuler(h);   //x=x(t+h)=x(t)+hv(t)

velocityEuler(h);   //v=v(t+h)=v(t)+ha(t)

...
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 function       represents the particle motion

 initial values are given 

 second-order differential equation is given

 at time     , the function and their derivatives are known

 how to compute 

Initial Value Problem 
of Second Order
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integration methods for integration methods for
first-order ODEs second-order ODE

(Newton’s motion equation)

Euler, Heun, Ralston, Verlet, velocity Verlet,

Midpoint method, Beeman, Gear,

4th order Runge-Kutta Euler-Cromer, Leap-Frog

Overview of 
Integration Schemes
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 Taylor approximations of           and

 adding both approximations

Verlet
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 independent of velocity 

 one derivative computation per time step

 efficient to compute, comparatively accurate 

 third-order in the position

 if required, velocity can be computed, e.g. using

 velocity is commonly required 
for collision response or damping

Verlet
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 one force (derivative) computation per time step

 second-order accuracy in position and velocity

 equivalent to

Velocity Verlet

Ft+h is computed 
using xt+h, vt+h
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 one force (derivative) computation per time step

 efficient to compute

 third-order accuracy in position and velocity

 is computed using

Beeman
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position   velocity   acceleration

Gear Integration
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Gear Integration
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Gear - Prediction
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 error

 error correction coefficients

Gear - Correction

k = 0 k = 1 k = 2 k = 3 k = 4 k =  5

20

3

360

251
1

18

11

6

1

60

1
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 initialization

 integration

 prediction

 error estimation

 correction

Gear - Implementation
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method force comp. error order error order

per time step position velocity

Euler 1 1 1

RK 2nd order 2 2 2

RK 4th order 4 4 4

Verlet 1 3 1

Velocity Verlet 1 2 2

Beeman 1 3 3

Comparison – Explicit Schemes
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Comparison – Explicit Schemes

 methods for first-order ODEs
 accuracy corresponds to computing complexity
 position and velocity have the same error order

 methods for second-order ODEs
 improved accuracy with minimal computing complexity
 error order might differ for position and velocity

 implicit methods cannot be compared this way
 do not only compute forces (derivatives)
 commonly require to solve a linear system
 improved stability even for low error orders,

implicit Euler with error order one can be unconditionally 
stable, e. g. for harmonic oscillators (springs)



University of Freiburg – Computer Science Department – Computer Graphics - 62

Advantages / Disadvantages

 explicit methods
 simple to set up and program
 fast computation per integration step
 suitable for parallel architectures
 small time steps required for stability
 many computing steps required for a given time interval t

 implicit methods
 stability is maintained for large time steps
 require less steps for a given interval t
 large time steps can cause large truncation errors
 complicate to set up
 less flexible, problems with non-analytical forces
 large computing time per integration step
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Advantages / Disadvantages

 predictor-corrector methods
 not self-starting
 have to be re-initialized in case of discontinuities,

e. g. due to collision response

 in general, implicit methods are more robust (stable) 
compared to explicit methods
 if an explicit scheme is not conditionally or unconditionally 

stable it cannot be used regardless of its efficiency

 explicit methods can be computed efficiently 
which is essential if frequent updates are required
 if an implicit scheme cannot be computed at 

interactive rates, it cannot be used in interactive 
applications regardless of the time step
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Summary

 motion equation for a mass point
 second-order differential equation
 coupled system of first-order differential equations

 numerical integration
 initial values xt and vt

 approximate integration of v and x through time with time step h

 integration schemes
 Euler, Runge-Kutta 2nd , Runge-Kutta 4th

 Crank-Nicolson, implicit Euler, Euler-Cromer, Leap-Frog
 Gear, Verlet, velocity Verlet, Beeman

 trade-off between accuracy and computing cost
 goal: maximizing the ratio of time step and computing cost


