
Simulation in Computer Graphics

Particles

Matthias Teschner

Computer Science Department
University of Freiburg

University of Freiburg – Computer Science Department – Computer Graphics - 2

 introduction

 particle motion

 finite differences

 system of first order ODEs

 second order ODE

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 3

 sets of particles (particle systems)
are used to model time-dependent
phenomena such as snow, fire, smoke

Motivation

University of Freiburg – Computer Science Department – Computer Graphics - 4

 particles are characterized by mass, position and velocity

 forces determine the dynamic behavior

 inter-particle forces are neglected

 particles can carry arbitrary attributes for rendering
purposes, e.g., shape, color, transparency, life time

Motivation

Kolb, Latta, Rezk-Salama

University of Freiburg – Computer Science Department – Computer Graphics - 5

Demo

750,000 particles in XNA,
http://www.youtube.com/watch?v=CyAZ2Y7nOTw

University of Freiburg – Computer Science Department – Computer Graphics - 6

 introduction

 particle motion

 finite differences

 system of first order ODEs

 second order ODE

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 7

 quantities relevant for the motion of a particle:

 mass

 position

 velocity

 force acting on the particle

 force generally depends on position and velocity

Particle Quantities

University of Freiburg – Computer Science Department – Computer Graphics - 8

 quantities are considered at discrete time points

 particle simulations are concerned with the computation

of unknown future particle quantities

using known current information

Particle Motion

University of Freiburg – Computer Science Department – Computer Graphics - 9

 Newton’s Second Law, Newton's motion
equation, motion equation of a particle

 the force acting on an object is equal to
the rate of change of its momentum

 constant mass

Governing Equation

University of Freiburg – Computer Science Department – Computer Graphics - 10

 is an ordinary differential equation ODE

 describes the behavior of in terms of its
derivatives with respect to time

 numerical integration can be employed to
numerically solve the ODE, i.e. to approximate
the unknown function

Governing Equation

University of Freiburg – Computer Science Department – Computer Graphics - 11

 initial value problem of second order

 second-order ODEs can be rewritten as a
system of two coupled equations of first order

 initial value problem of first order

Governing Equation

University of Freiburg – Computer Science Department – Computer Graphics - 12

 functions represent the particle motion

 initial values are given

 first-order differential equations are given

 the functions and their first derivatives are known at

 how to compute

Initial Value Problem
of First Order

University of Freiburg – Computer Science Department – Computer Graphics - 13

 generally depend on positions and velocities

 friction / fluid viscosity depend on velocities

 spring forces, shear, stretch depend on positions

 contact handling forces depend
on positions and velocities

 can be arbitrarily expensive to compute

 consider one particle (particle system) or
sets of particles (deformables, fluids)

 require additional effort, e.g., contact handling forces
 detect collisions of particles with obstacles

 compute penalty force from penetration depth

Forces

University of Freiburg – Computer Science Department – Computer Graphics - 14

 introduction

 particle motion

 finite differences

 system of first order ODEs

 second order ODE

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 15

Finite Differences

 Taylor-series approximation

 continuous ODEs are replaced with
discrete finite-difference equations FDEs

O(h2) – truncation or discretization error

O(h) – error order of, e.g., a scheme
that employs such approximation

University of Freiburg – Computer Science Department – Computer Graphics - 16

 polynomial fitting (line fitting in case of one sample)

which results in

Finite Differences

University of Freiburg – Computer Science Department – Computer Graphics - 17

 introduction

 particle motion

 finite differences

 system of first order ODEs

 explicit approaches

 predictor corrector approaches

 implicit approaches

 second order ODE

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 18

 initialize

 numerical integration of position and velocity

Euler Method

University of Freiburg – Computer Science Department – Computer Graphics - 19

 Euler step from to

 Euler step from to

 the position update depends on velocity

 the velocity update depends on position and velocity

Coupled Equations

University of Freiburg – Computer Science Department – Computer Graphics - 20

 discretization error is defined as the difference
between the solution of the ODE and the
solution of the FDE

 the FDE is consistent, if the discretization error
vanishes if the time step h approaches zero

 the FDE is stable, if previously introduced errors
(discretization, round-off) do not grow
within a simulation step

 the FDE is convergent, if the solution of the FDE
approaches the solution of the ODE

Accuracy and Stability

University of Freiburg – Computer Science Department – Computer Graphics - 21

 although the discretization error is diminished
by smaller time steps in consistent schemes,
the discretization error is introduced in each
step of the FD scheme

 if previously introduced discretization errors
are not amplified by the FD scheme, then it
is stable

 consistent and stable schemes are convergent

Accuracy and Stability

University of Freiburg – Computer Science Department – Computer Graphics - 22

 if stability is influenced by the time step,
the FD scheme is conditionally stable

 if the FD scheme is stable or unstable for
arbitrary time steps, it is unconditionally
stable or unstable

 ODE, FDE and the parameters influence
the stability of a system

 schemes with improved stability
work with larger time steps

Stability

University of Freiburg – Computer Science Department – Computer Graphics - 23

 larger time steps typically speed up a simulation

 smaller time steps can improve the stability

 arbitrarily small time steps are not feasible
due to round-off errors

 for larger time steps,
the error is dominated by the discretization error

 for smaller time steps,
the error is dominated by round-off errors

 performance of an FD scheme is trade-off
between error order in terms of the time
step and computing complexity

Time Step

University of Freiburg – Computer Science Department – Computer Graphics - 24

Second-Order Runge-Kutta
Midpoint Method

Euler

• compute the derivative at t0

• approximate f (t0 +h)
using the derivative at t0

error

Midpoint Method

• compute the derivative at t0

• compute f(t0 +h/2)

• compute the derivative at t0 +h/2

• approximate f (t0 +h)
using the derivative at t0 +h/2

error

University of Freiburg – Computer Science Department – Computer Graphics - 25

 compute x’(t)

 compute v’(t)

 compute x’(t+h/2)

 compute v’(t+h/2)
with x(t+h/2) and v(t+h/2)

 compute x(t+h) with x’(t+h/2)

 compute v(t+h) with v’(t+h/2)

Second-Order Runge-Kutta
Midpoint Method

University of Freiburg – Computer Science Department – Computer Graphics - 26

 compute x’(t)

 compute v’(t)

 compute x’(t+h)

 compute v’(t+h)

 c. x(t+h) with x’(t) and x’(t+h)

 c. v(t+h) with v’(t) and v’(t+h)

Second-Order Runge-Kutta
Heun

University of Freiburg – Computer Science Department – Computer Graphics - 27

 compute x’(t)

 compute v’(t)

 compute x’(t+3h/4)

 compute v’(t+3h/4)
with x(t+3h/4) and v(t+3h/4)

 c. x(t+h) with x’(t) and x’(t+3h/4)

 c. v(t+h) with v’(t) and v’(t+3h/4)

Second-Order Runge-Kutta
Ralston Method

University of Freiburg – Computer Science Department – Computer Graphics - 28

 compute f’(t0) (1)
 compute f(t0+h/2)

with f (t0) and f’(t0)
 compute f’(t0+h/2) (2)
 compute f(t0+h/2)

with f (t0) and f’(t0+h/2)
 compute f’(t0+h/2) (3)
 compute f(t0+h)

with f (t0) and f’(t0+h/2)
 compute f’(t0+h) (4)
 compute f(t0+h) with f (t0) and a

weighted average of all derivatives (1) – (4)

Fourth-Order Runge-Kutta
Runge

error

University of Freiburg – Computer Science Department – Computer Graphics - 29

 four derivative computations per time step

 error

Fourth-Order Runge-Kutta
Runge

University of Freiburg – Computer Science Department – Computer Graphics - 30

 four derivative computations per time step

 error

Fourth-Order Runge-Kutta
Kutta

University of Freiburg – Computer Science Department – Computer Graphics - 31

 similar performance if the time step for RK 2
is twice the time step for Euler

 Does RK allow for faster simulations than Euler?

Performance

Euler Runge-Kutta

• one computation of the
derivative per time step

• error

• two (four) computations of
the derivative per time step

• error

• allows larger time steps

University of Freiburg – Computer Science Department – Computer Graphics - 32

 Euler

 one function evaluation

 force computation

 position and velocity update

 Runge-Kutta

 multiple function evaluations

 computation of auxiliary forces, positions, velocities
 once for second order

 three times for fourth order

 position and velocity update

Implementation

University of Freiburg – Computer Science Department – Computer Graphics - 33

 introduction

 particle motion

 finite differences

 system of first order ODEs

 explicit approaches

 predictor corrector approaches

 implicit approaches

 second order ODE

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 34

 predict a value from current (and previous) derivatives
 correct the predicted value with its derivative
 second-order Adams-Bashforth predictor

 second-order Adams-Moulton corrector

 based on Lagrange polynomials or Taylor approximations
 can be efficiently implemented with

two derivative computations per simulation step
 requires values at previous time steps,

not self-starting

Predictor-Corrector Methods

University of Freiburg – Computer Science Department – Computer Graphics - 35

Adams-Bashforth Predictors

University of Freiburg – Computer Science Department – Computer Graphics - 36

Adams-Moulton Correctors

University of Freiburg – Computer Science Department – Computer Graphics - 38

 introduction

 particle motion

 finite differences

 system of first order ODEs

 explicit approaches

 predictor corrector approaches

 implicit approaches

 second order ODE

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 39

explicit Euler implicit Euler

- one unknown per equation - system of algebraic equations
- direct calculation of x(t+h) with many unknowns

and v(t+h) - simultaneous computation of
- non-linear equations have x(t+h) and v(t+h)

no effect on the approach - solution of a system of equations
- can handle non-analytical, - non-linear equations are commonly

procedural forces linearized to get a system of
linear equations

Explicit and Implicit Integration

University of Freiburg – Computer Science Department – Computer Graphics - 40

 one-dimensional scalar field

 multi-dimensional scalar field

 gradient

 nabla, del

Linearization of Scalar Functions

University of Freiburg – Computer Science Department – Computer Graphics - 41

 multi-dimensional vector field

 Jacobi matrix

Linearization of Vector Fields

University of Freiburg – Computer Science Department – Computer Graphics - 42

 general form

 explicit Euler

 implicit Euler

 Crank Nicolson

Implicit Integration
Theta Scheme

University of Freiburg – Computer Science Department – Computer Graphics - 43

 rewriting the problem for

 force linearization

 solving a linear system for

Theta Scheme
Example Implementation

In this example,
force F depends on x,
not on v.

University of Freiburg – Computer Science Department – Computer Graphics - 44

 linear system

 gradient of a function

with

 iterative solution for with initial value

Theta Scheme
Conjugate Gradient

University of Freiburg – Computer Science Department – Computer Graphics - 45

 v0 = v(t)
 direction d
 residual r
 step size
 v(t+h) = vi

 A is symmetric, positive-definite
 -r0, -d0 gradient of function f
 di, dj are conjugate,

i.e. di
T A dj = 0

 ri = 0 in maximal n steps,
if v has n components

Conjugate Gradient Method

University of Freiburg – Computer Science Department – Computer Graphics - 46

Euler-Cromer (semi-implicit)

Euler-Cromer

...

computeForces(); //F(t)

velocityEuler(h); //v=v(t+h)=v(t)+ha(t)

positionEuler(h); //x=x(t+h)=x(t)+hv(t+h)

...

Euler

...

computeForces(); //F(t)

positionEuler(h); //x=x(t+h)=x(t)+hv(t)

velocityEuler(h); //v=v(t+h)=v(t)+ha(t)

...

University of Freiburg – Computer Science Department – Computer Graphics - 47

 error

 can generally handle larger time steps h
compared to Euler

Leap Frog

Leap Frog

initV() // v(0) = v(0) – (h/2)a(0)

...

computeForces(); //F(t)

velocityEuler(h); //v=v(t+h)=v(t)+ha(t)

positionEuler(h); //x=x(t+h)=x(t)+hv(t+h)

...

Euler

...

computeForces(); //F(t)

positionEuler(h); //x=x(t+h)=x(t)+hv(t)

velocityEuler(h); //v=v(t+h)=v(t)+ha(t)

...

University of Freiburg – Computer Science Department – Computer Graphics - 48

 introduction

 particle motion

 finite differences

 system of first order ODEs

 second order ODE

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 49

 function represents the particle motion

 initial values are given

 second-order differential equation is given

 at time , the function and their derivatives are known

 how to compute

Initial Value Problem
of Second Order

University of Freiburg – Computer Science Department – Computer Graphics - 50

integration methods for integration methods for
first-order ODEs second-order ODE

(Newton’s motion equation)

Euler, Heun, Ralston, Verlet, velocity Verlet,

Midpoint method, Beeman, Gear,

4th order Runge-Kutta Euler-Cromer, Leap-Frog

Overview of
Integration Schemes

University of Freiburg – Computer Science Department – Computer Graphics - 51

 Taylor approximations of and

 adding both approximations

Verlet

University of Freiburg – Computer Science Department – Computer Graphics - 52

 independent of velocity

 one derivative computation per time step

 efficient to compute, comparatively accurate

 third-order in the position

 if required, velocity can be computed, e.g. using

 velocity is commonly required
for collision response or damping

Verlet

University of Freiburg – Computer Science Department – Computer Graphics - 53

 one force (derivative) computation per time step

 second-order accuracy in position and velocity

 equivalent to

Velocity Verlet

Ft+h is computed
using xt+h, vt+h

University of Freiburg – Computer Science Department – Computer Graphics - 54

 one force (derivative) computation per time step

 efficient to compute

 third-order accuracy in position and velocity

 is computed using

Beeman

University of Freiburg – Computer Science Department – Computer Graphics - 55

position velocity acceleration

Gear Integration

University of Freiburg – Computer Science Department – Computer Graphics - 56

Gear Integration

University of Freiburg – Computer Science Department – Computer Graphics - 57

Gear - Prediction

University of Freiburg – Computer Science Department – Computer Graphics - 58

 error

 error correction coefficients

Gear - Correction

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

20

3

360

251
1

18

11

6

1

60

1

University of Freiburg – Computer Science Department – Computer Graphics - 59

 initialization

 integration

 prediction

 error estimation

 correction

Gear - Implementation

University of Freiburg – Computer Science Department – Computer Graphics - 60

method force comp. error order error order

per time step position velocity

Euler 1 1 1

RK 2nd order 2 2 2

RK 4th order 4 4 4

Verlet 1 3 1

Velocity Verlet 1 2 2

Beeman 1 3 3

Comparison – Explicit Schemes

University of Freiburg – Computer Science Department – Computer Graphics - 61

Comparison – Explicit Schemes

 methods for first-order ODEs
 accuracy corresponds to computing complexity
 position and velocity have the same error order

 methods for second-order ODEs
 improved accuracy with minimal computing complexity
 error order might differ for position and velocity

 implicit methods cannot be compared this way
 do not only compute forces (derivatives)
 commonly require to solve a linear system
 improved stability even for low error orders,

implicit Euler with error order one can be unconditionally
stable, e. g. for harmonic oscillators (springs)

University of Freiburg – Computer Science Department – Computer Graphics - 62

Advantages / Disadvantages

 explicit methods
 simple to set up and program
 fast computation per integration step
 suitable for parallel architectures
 small time steps required for stability
 many computing steps required for a given time interval t

 implicit methods
 stability is maintained for large time steps
 require less steps for a given interval t
 large time steps can cause large truncation errors
 complicate to set up
 less flexible, problems with non-analytical forces
 large computing time per integration step

University of Freiburg – Computer Science Department – Computer Graphics - 63

Advantages / Disadvantages

 predictor-corrector methods
 not self-starting
 have to be re-initialized in case of discontinuities,

e. g. due to collision response

 in general, implicit methods are more robust (stable)
compared to explicit methods
 if an explicit scheme is not conditionally or unconditionally

stable it cannot be used regardless of its efficiency

 explicit methods can be computed efficiently
which is essential if frequent updates are required
 if an implicit scheme cannot be computed at

interactive rates, it cannot be used in interactive
applications regardless of the time step

University of Freiburg – Computer Science Department – Computer Graphics - 64

Summary

 motion equation for a mass point
 second-order differential equation
 coupled system of first-order differential equations

 numerical integration
 initial values xt and vt

 approximate integration of v and x through time with time step h

 integration schemes
 Euler, Runge-Kutta 2nd , Runge-Kutta 4th

 Crank-Nicolson, implicit Euler, Euler-Cromer, Leap-Frog
 Gear, Verlet, velocity Verlet, Beeman

 trade-off between accuracy and computing cost
 goal: maximizing the ratio of time step and computing cost

