
Simulation in Computer Graphics

Particles

Matthias Teschner

Computer Science Department
University of Freiburg

University of Freiburg – Computer Science Department – Computer Graphics - 2

 introduction

 particle motion

 finite differences

 system of first order ODEs

 second order ODE

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 3

 sets of particles (particle systems)
are used to model time-dependent
phenomena such as snow, fire, smoke

Motivation

University of Freiburg – Computer Science Department – Computer Graphics - 4

 particles are characterized by mass, position and velocity

 forces determine the dynamic behavior

 inter-particle forces are neglected

 particles can carry arbitrary attributes for rendering
purposes, e.g., shape, color, transparency, life time

Motivation

Kolb, Latta, Rezk-Salama

University of Freiburg – Computer Science Department – Computer Graphics - 5

Demo

750,000 particles in XNA,
http://www.youtube.com/watch?v=CyAZ2Y7nOTw

University of Freiburg – Computer Science Department – Computer Graphics - 6

 introduction

 particle motion

 finite differences

 system of first order ODEs

 second order ODE

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 7

 quantities relevant for the motion of a particle:

 mass

 position

 velocity

 force acting on the particle

 force generally depends on position and velocity

Particle Quantities

University of Freiburg – Computer Science Department – Computer Graphics - 8

 quantities are considered at discrete time points

 particle simulations are concerned with the computation

of unknown future particle quantities

using known current information

Particle Motion

University of Freiburg – Computer Science Department – Computer Graphics - 9

 Newton’s Second Law, Newton's motion
equation, motion equation of a particle

 the force acting on an object is equal to
the rate of change of its momentum

 constant mass

Governing Equation

University of Freiburg – Computer Science Department – Computer Graphics - 10

 is an ordinary differential equation ODE

 describes the behavior of in terms of its
derivatives with respect to time

 numerical integration can be employed to
numerically solve the ODE, i.e. to approximate
the unknown function

Governing Equation

University of Freiburg – Computer Science Department – Computer Graphics - 11

 initial value problem of second order

 second-order ODEs can be rewritten as a
system of two coupled equations of first order

 initial value problem of first order

Governing Equation

University of Freiburg – Computer Science Department – Computer Graphics - 12

 functions represent the particle motion

 initial values are given

 first-order differential equations are given

 the functions and their first derivatives are known at

 how to compute

Initial Value Problem
of First Order

University of Freiburg – Computer Science Department – Computer Graphics - 13

 generally depend on positions and velocities

 friction / fluid viscosity depend on velocities

 spring forces, shear, stretch depend on positions

 contact handling forces depend
on positions and velocities

 can be arbitrarily expensive to compute

 consider one particle (particle system) or
sets of particles (deformables, fluids)

 require additional effort, e.g., contact handling forces
 detect collisions of particles with obstacles

 compute penalty force from penetration depth

Forces

University of Freiburg – Computer Science Department – Computer Graphics - 14

 introduction

 particle motion

 finite differences

 system of first order ODEs

 second order ODE

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 15

Finite Differences

 Taylor-series approximation

 continuous ODEs are replaced with
discrete finite-difference equations FDEs

O(h2) – truncation or discretization error

O(h) – error order of, e.g., a scheme
that employs such approximation

University of Freiburg – Computer Science Department – Computer Graphics - 16

 polynomial fitting (line fitting in case of one sample)

which results in

Finite Differences

University of Freiburg – Computer Science Department – Computer Graphics - 17

 introduction

 particle motion

 finite differences

 system of first order ODEs

 explicit approaches

 predictor corrector approaches

 implicit approaches

 second order ODE

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 18

 initialize

 numerical integration of position and velocity

Euler Method

University of Freiburg – Computer Science Department – Computer Graphics - 19

 Euler step from to

 Euler step from to

 the position update depends on velocity

 the velocity update depends on position and velocity

Coupled Equations

University of Freiburg – Computer Science Department – Computer Graphics - 20

 discretization error is defined as the difference
between the solution of the ODE and the
solution of the FDE

 the FDE is consistent, if the discretization error
vanishes if the time step h approaches zero

 the FDE is stable, if previously introduced errors
(discretization, round-off) do not grow
within a simulation step

 the FDE is convergent, if the solution of the FDE
approaches the solution of the ODE

Accuracy and Stability

University of Freiburg – Computer Science Department – Computer Graphics - 21

 although the discretization error is diminished
by smaller time steps in consistent schemes,
the discretization error is introduced in each
step of the FD scheme

 if previously introduced discretization errors
are not amplified by the FD scheme, then it
is stable

 consistent and stable schemes are convergent

Accuracy and Stability

University of Freiburg – Computer Science Department – Computer Graphics - 22

 if stability is influenced by the time step,
the FD scheme is conditionally stable

 if the FD scheme is stable or unstable for
arbitrary time steps, it is unconditionally
stable or unstable

 ODE, FDE and the parameters influence
the stability of a system

 schemes with improved stability
work with larger time steps

Stability

University of Freiburg – Computer Science Department – Computer Graphics - 23

 larger time steps typically speed up a simulation

 smaller time steps can improve the stability

 arbitrarily small time steps are not feasible
due to round-off errors

 for larger time steps,
the error is dominated by the discretization error

 for smaller time steps,
the error is dominated by round-off errors

 performance of an FD scheme is trade-off
between error order in terms of the time
step and computing complexity

Time Step

University of Freiburg – Computer Science Department – Computer Graphics - 24

Second-Order Runge-Kutta
Midpoint Method

Euler

• compute the derivative at t0

• approximate f (t0 +h)
using the derivative at t0

error

Midpoint Method

• compute the derivative at t0

• compute f(t0 +h/2)

• compute the derivative at t0 +h/2

• approximate f (t0 +h)
using the derivative at t0 +h/2

error

University of Freiburg – Computer Science Department – Computer Graphics - 25

 compute x’(t)

 compute v’(t)

 compute x’(t+h/2)

 compute v’(t+h/2)
with x(t+h/2) and v(t+h/2)

 compute x(t+h) with x’(t+h/2)

 compute v(t+h) with v’(t+h/2)

Second-Order Runge-Kutta
Midpoint Method

University of Freiburg – Computer Science Department – Computer Graphics - 26

 compute x’(t)

 compute v’(t)

 compute x’(t+h)

 compute v’(t+h)

 c. x(t+h) with x’(t) and x’(t+h)

 c. v(t+h) with v’(t) and v’(t+h)

Second-Order Runge-Kutta
Heun

University of Freiburg – Computer Science Department – Computer Graphics - 27

 compute x’(t)

 compute v’(t)

 compute x’(t+3h/4)

 compute v’(t+3h/4)
with x(t+3h/4) and v(t+3h/4)

 c. x(t+h) with x’(t) and x’(t+3h/4)

 c. v(t+h) with v’(t) and v’(t+3h/4)

Second-Order Runge-Kutta
Ralston Method

University of Freiburg – Computer Science Department – Computer Graphics - 28

 compute f’(t0) (1)
 compute f(t0+h/2)

with f (t0) and f’(t0)
 compute f’(t0+h/2) (2)
 compute f(t0+h/2)

with f (t0) and f’(t0+h/2)
 compute f’(t0+h/2) (3)
 compute f(t0+h)

with f (t0) and f’(t0+h/2)
 compute f’(t0+h) (4)
 compute f(t0+h) with f (t0) and a

weighted average of all derivatives (1) – (4)

Fourth-Order Runge-Kutta
Runge

error

University of Freiburg – Computer Science Department – Computer Graphics - 29

 four derivative computations per time step

 error

Fourth-Order Runge-Kutta
Runge

University of Freiburg – Computer Science Department – Computer Graphics - 30

 four derivative computations per time step

 error

Fourth-Order Runge-Kutta
Kutta

University of Freiburg – Computer Science Department – Computer Graphics - 31

 similar performance if the time step for RK 2
is twice the time step for Euler

 Does RK allow for faster simulations than Euler?

Performance

Euler Runge-Kutta

• one computation of the
derivative per time step

• error

• two (four) computations of
the derivative per time step

• error

• allows larger time steps

University of Freiburg – Computer Science Department – Computer Graphics - 32

 Euler

 one function evaluation

 force computation

 position and velocity update

 Runge-Kutta

 multiple function evaluations

 computation of auxiliary forces, positions, velocities
 once for second order

 three times for fourth order

 position and velocity update

Implementation

University of Freiburg – Computer Science Department – Computer Graphics - 33

 introduction

 particle motion

 finite differences

 system of first order ODEs

 explicit approaches

 predictor corrector approaches

 implicit approaches

 second order ODE

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 34

 predict a value from current (and previous) derivatives
 correct the predicted value with its derivative
 second-order Adams-Bashforth predictor

 second-order Adams-Moulton corrector

 based on Lagrange polynomials or Taylor approximations
 can be efficiently implemented with

two derivative computations per simulation step
 requires values at previous time steps,

not self-starting

Predictor-Corrector Methods

University of Freiburg – Computer Science Department – Computer Graphics - 35

Adams-Bashforth Predictors

University of Freiburg – Computer Science Department – Computer Graphics - 36

Adams-Moulton Correctors

University of Freiburg – Computer Science Department – Computer Graphics - 38

 introduction

 particle motion

 finite differences

 system of first order ODEs

 explicit approaches

 predictor corrector approaches

 implicit approaches

 second order ODE

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 39

explicit Euler implicit Euler

- one unknown per equation - system of algebraic equations
- direct calculation of x(t+h) with many unknowns

and v(t+h) - simultaneous computation of
- non-linear equations have x(t+h) and v(t+h)

no effect on the approach - solution of a system of equations
- can handle non-analytical, - non-linear equations are commonly

procedural forces linearized to get a system of
linear equations

Explicit and Implicit Integration

University of Freiburg – Computer Science Department – Computer Graphics - 40

 one-dimensional scalar field

 multi-dimensional scalar field

 gradient

 nabla, del

Linearization of Scalar Functions

University of Freiburg – Computer Science Department – Computer Graphics - 41

 multi-dimensional vector field

 Jacobi matrix

Linearization of Vector Fields

University of Freiburg – Computer Science Department – Computer Graphics - 42

 general form

 explicit Euler

 implicit Euler

 Crank Nicolson

Implicit Integration
Theta Scheme

University of Freiburg – Computer Science Department – Computer Graphics - 43

 rewriting the problem for

 force linearization

 solving a linear system for

Theta Scheme
Example Implementation

In this example,
force F depends on x,
not on v.

University of Freiburg – Computer Science Department – Computer Graphics - 44

 linear system

 gradient of a function

with

 iterative solution for with initial value

Theta Scheme
Conjugate Gradient

University of Freiburg – Computer Science Department – Computer Graphics - 45

 v0 = v(t)
 direction d
 residual r
 step size 
 v(t+h) = vi

 A is symmetric, positive-definite
 -r0, -d0 gradient of function f
 di, dj are conjugate,

i.e. di
T A dj = 0

 ri = 0 in maximal n steps,
if v has n components

Conjugate Gradient Method

University of Freiburg – Computer Science Department – Computer Graphics - 46

Euler-Cromer (semi-implicit)

Euler-Cromer

...

computeForces(); //F(t)

velocityEuler(h); //v=v(t+h)=v(t)+ha(t)

positionEuler(h); //x=x(t+h)=x(t)+hv(t+h)

...

Euler

...

computeForces(); //F(t)

positionEuler(h); //x=x(t+h)=x(t)+hv(t)

velocityEuler(h); //v=v(t+h)=v(t)+ha(t)

...

University of Freiburg – Computer Science Department – Computer Graphics - 47

 error

 can generally handle larger time steps h
compared to Euler

Leap Frog

Leap Frog

initV() // v(0) = v(0) – (h/2)a(0)

...

computeForces(); //F(t)

velocityEuler(h); //v=v(t+h)=v(t)+ha(t)

positionEuler(h); //x=x(t+h)=x(t)+hv(t+h)

...

Euler

...

computeForces(); //F(t)

positionEuler(h); //x=x(t+h)=x(t)+hv(t)

velocityEuler(h); //v=v(t+h)=v(t)+ha(t)

...

University of Freiburg – Computer Science Department – Computer Graphics - 48

 introduction

 particle motion

 finite differences

 system of first order ODEs

 second order ODE

Outline

University of Freiburg – Computer Science Department – Computer Graphics - 49

 function represents the particle motion

 initial values are given

 second-order differential equation is given

 at time , the function and their derivatives are known

 how to compute

Initial Value Problem
of Second Order

University of Freiburg – Computer Science Department – Computer Graphics - 50

integration methods for integration methods for
first-order ODEs second-order ODE

(Newton’s motion equation)

Euler, Heun, Ralston, Verlet, velocity Verlet,

Midpoint method, Beeman, Gear,

4th order Runge-Kutta Euler-Cromer, Leap-Frog

Overview of
Integration Schemes

University of Freiburg – Computer Science Department – Computer Graphics - 51

 Taylor approximations of and

 adding both approximations

Verlet

University of Freiburg – Computer Science Department – Computer Graphics - 52

 independent of velocity

 one derivative computation per time step

 efficient to compute, comparatively accurate

 third-order in the position

 if required, velocity can be computed, e.g. using

 velocity is commonly required
for collision response or damping

Verlet

University of Freiburg – Computer Science Department – Computer Graphics - 53

 one force (derivative) computation per time step

 second-order accuracy in position and velocity

 equivalent to

Velocity Verlet

Ft+h is computed
using xt+h, vt+h

University of Freiburg – Computer Science Department – Computer Graphics - 54

 one force (derivative) computation per time step

 efficient to compute

 third-order accuracy in position and velocity

 is computed using

Beeman

University of Freiburg – Computer Science Department – Computer Graphics - 55

position velocity acceleration

Gear Integration

University of Freiburg – Computer Science Department – Computer Graphics - 56

Gear Integration

University of Freiburg – Computer Science Department – Computer Graphics - 57

Gear - Prediction

University of Freiburg – Computer Science Department – Computer Graphics - 58

 error

 error correction coefficients

Gear - Correction

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

20

3

360

251
1

18

11

6

1

60

1

University of Freiburg – Computer Science Department – Computer Graphics - 59

 initialization

 integration

 prediction

 error estimation

 correction

Gear - Implementation

University of Freiburg – Computer Science Department – Computer Graphics - 60

method force comp. error order error order

per time step position velocity

Euler 1 1 1

RK 2nd order 2 2 2

RK 4th order 4 4 4

Verlet 1 3 1

Velocity Verlet 1 2 2

Beeman 1 3 3

Comparison – Explicit Schemes

University of Freiburg – Computer Science Department – Computer Graphics - 61

Comparison – Explicit Schemes

 methods for first-order ODEs
 accuracy corresponds to computing complexity
 position and velocity have the same error order

 methods for second-order ODEs
 improved accuracy with minimal computing complexity
 error order might differ for position and velocity

 implicit methods cannot be compared this way
 do not only compute forces (derivatives)
 commonly require to solve a linear system
 improved stability even for low error orders,

implicit Euler with error order one can be unconditionally
stable, e. g. for harmonic oscillators (springs)

University of Freiburg – Computer Science Department – Computer Graphics - 62

Advantages / Disadvantages

 explicit methods
 simple to set up and program
 fast computation per integration step
 suitable for parallel architectures
 small time steps required for stability
 many computing steps required for a given time interval t

 implicit methods
 stability is maintained for large time steps
 require less steps for a given interval t
 large time steps can cause large truncation errors
 complicate to set up
 less flexible, problems with non-analytical forces
 large computing time per integration step

University of Freiburg – Computer Science Department – Computer Graphics - 63

Advantages / Disadvantages

 predictor-corrector methods
 not self-starting
 have to be re-initialized in case of discontinuities,

e. g. due to collision response

 in general, implicit methods are more robust (stable)
compared to explicit methods
 if an explicit scheme is not conditionally or unconditionally

stable it cannot be used regardless of its efficiency

 explicit methods can be computed efficiently
which is essential if frequent updates are required
 if an implicit scheme cannot be computed at

interactive rates, it cannot be used in interactive
applications regardless of the time step

University of Freiburg – Computer Science Department – Computer Graphics - 64

Summary

 motion equation for a mass point
 second-order differential equation
 coupled system of first-order differential equations

 numerical integration
 initial values xt and vt

 approximate integration of v and x through time with time step h

 integration schemes
 Euler, Runge-Kutta 2nd , Runge-Kutta 4th

 Crank-Nicolson, implicit Euler, Euler-Cromer, Leap-Frog
 Gear, Verlet, velocity Verlet, Beeman

 trade-off between accuracy and computing cost
 goal: maximizing the ratio of time step and computing cost

