Simulation in Computer Graphics **Particles**

Matthias Teschner

Computer Science Department University of Freiburg

Albert-Ludwigs-Universität Freiburg

FREIBURG

Outline

- introduction
- particle motion
- finite differences
- system of first order ODEs
- second order ODE

Motivation

 sets of particles (particle systems) are used to model time-dependent phenomena such as snow, fire, smoke

Motivation

- particles are characterized by mass, position and velocity
- forces determine the dynamic behavior
- inter-particle forces are neglected
- particles can carry arbitrary attributes for rendering purposes, e.g., shape, color, transparency, life time

Kolb, Latta, Rezk-Salama

University of Freiburg – Computer Science Department – Computer Graphics - 4

REIBURG

750,000 particles in XNA, http://www.youtube.com/watch?v=CyAZ2Y7nOTw

University of Freiburg – Computer Science Department – Computer Graphics - 5

UNI FREIBURG

Outline

- introduction
- particle motion
- finite differences
- system of first order ODEs
- second order ODE

Particle Quantities

- quantities relevant for the motion of a particle:
 - mass $m \in \mathbb{R}$
 - position $\mathbf{x} \in \mathbb{R}^3$
 - velocity $\mathbf{v} \in \mathbb{R}^3$
 - force $\mathbf{F} \in \mathbb{R}^3$ acting on the particle
 - force F generally depends on position and velocity

Particle Motion

quantities are considered at discrete time points

particle simulations are concerned with the computation of unknown future particle quantities \mathbf{x}_{t+h} , \mathbf{v}_{t+h} using known current information \mathbf{x}_t , \mathbf{v}_t , \mathbf{F}_t

Governing Equation

- Newton's Second Law, Newton's motion equation, motion equation of a particle
- the force acting on an object is equal to the rate of change of its momentum

$$\mathbf{F}_t = \frac{d}{dt} \left(m \mathbf{v}_t \right) = \frac{dm}{dt} \mathbf{v}_t + m \frac{d \mathbf{v}_t}{dt}$$

constant mass

$$\mathbf{F}_t = m \frac{d\mathbf{v}_t}{dt} = m \frac{d^2 \mathbf{x}_t}{dt^2}$$

Governing Equation

• $\mathbf{F}_t = m \frac{d^2 \mathbf{x}_t}{dt^2}$ is an ordinary differential equation ODE

- describes the behavior of x_t in terms of its derivatives with respect to time
- numerical integration can be employed to numerically solve the ODE, i.e. to approximate the unknown function x_t

Governing Equation

initial value problem of second order

$$\frac{d^2 \mathbf{x}_t}{dt^2} = \frac{1}{m} \mathbf{F}_t \qquad \mathbf{x}_{t_0} = \mathbf{x}_0 \quad \frac{d \mathbf{x}_{t_0}}{dt} = \mathbf{v}_0$$

- second-order ODEs can be rewritten as a system of two coupled equations of first order
- initial value problem of first order

$$\frac{d\mathbf{x}_t}{dt} = \mathbf{v}_t \qquad \qquad \mathbf{x}_{t_0} = \mathbf{x}_0$$

$$\frac{d\mathbf{v}_t}{dt} = \frac{1}{m} \mathbf{F}_t \qquad \mathbf{v}_{t_0} = \mathbf{v}_0$$

Initial Value Problem of First Order

- functions \mathbf{x}_t , \mathbf{v}_t represent the particle motion
- initial values are given $\mathbf{x}_{t_0}, \mathbf{v}_{t_0}$
- first-order differential equations are given

$$\frac{d\mathbf{x}_t}{dt} = \mathbf{v}_t \qquad \frac{d\mathbf{v}_t}{dt} = \frac{1}{m}\mathbf{F}_t$$

- the functions and their first derivatives are known at t_0
- how to compute $\mathbf{x}_{t_0+h}, \mathbf{v}_{t_0+h}$

University of Freiburg – Computer Science Department – Computer Graphics - 12

Forces

- generally depend on positions and velocities
 - friction / fluid viscosity depend on velocities
 - spring forces, shear, stretch depend on positions
 - contact handling forces depend on positions and velocities
- can be arbitrarily expensive to compute
 - consider one particle (particle system) or sets of particles (deformables, fluids)
 - require additional effort, e.g., contact handling forces
 - detect collisions of particles with obstacles
 - compute penalty force from penetration depth

BURG

Outline

- introduction
- particle motion
- finite differences
- system of first order ODEs
- second order ODE

Finite Differences

Taylor-series approximation

$$\mathbf{x}_{t+h} = \mathbf{x}_t + \frac{d\mathbf{x}_t}{dt}h + O(h^2)$$

O(h²) – truncation or discretization error

 $\frac{d\mathbf{x}_t}{dt} = \frac{\mathbf{x}_{t+h} - \mathbf{x}_t}{h} + O(h)$

O(h) – error order of, e.g., a scheme that employs such approximation

BURG

 continuous ODEs are replaced with discrete finite-difference equations FDEs

$$\frac{d\mathbf{x}_t}{dt} = \mathbf{v}_t \qquad \Rightarrow \quad \frac{\mathbf{x}_{t+h} - \mathbf{x}_t}{h} = \mathbf{v}_t$$
$$\frac{d\mathbf{v}_t}{dt} = \frac{1}{m}\mathbf{F}_t \qquad \Rightarrow \quad \frac{\mathbf{v}_{t+h} - \mathbf{v}_t}{h} = \frac{1}{m}\mathbf{F}_t$$

University of Freiburg – Computer Science Department – Computer Graphics - 15

Finite Differences

polynomial fitting (line fitting in case of one sample)
 $\mathbf{x}_t = \mathbf{a}t + \mathbf{b}$

$$\Rightarrow \frac{d\mathbf{x}_t}{dt} = \mathbf{a} \quad \Rightarrow \mathbf{b} = \mathbf{x}_t - \frac{d\mathbf{x}_t}{dt}t$$
$$\mathbf{x}_{t+h} = \frac{d\mathbf{x}_t}{dt}(t+h) + \mathbf{x}_t - \frac{d\mathbf{x}_t}{dt}t$$

which results in

$$\frac{d\mathbf{x}_t}{dt} = \frac{\mathbf{x}_{t+h} - \mathbf{x}_t}{h} + O(h)$$

Outline

- introduction
- particle motion
- finite differences
- system of first order ODEs
 - explicit approaches
 - predictor corrector approaches
 - implicit approaches
- second order ODE

Euler Method

$$\frac{d\mathbf{x}_t}{dt} = \dot{\mathbf{x}} = \mathbf{v}_t \qquad \frac{d\mathbf{v}_t}{dt} = \dot{\mathbf{v}} = \frac{1}{m}\mathbf{F}_t$$

- initialize $\mathbf{x}_{t_0} = \mathbf{x}_0, \ \mathbf{v}_{t_0} = \mathbf{v}_0, \ \mathbf{F}_{t_0}, \ m, \ h$
- numerical integration of position and velocity

$$\mathbf{x}_{t_0+h} = \mathbf{x}_{t_0} + h\dot{\mathbf{x}}_{t_0} = \mathbf{x}_{t_0} + h\mathbf{v}_{t_0}$$

$$\mathbf{v}_{t_0+h} = \mathbf{v}_{t_0} + h\dot{\mathbf{v}}_{t_0} = \mathbf{v}_{t_0} + h\frac{1}{m}\mathbf{F}_{t_0}$$

University of Freiburg – Computer Science Department – Computer Graphics - 18

Coupled Equations

• Euler step from t_0 to $t_0 + h$

$$\mathbf{x}_{t_0+h} = \mathbf{x}_{t_0} + h\mathbf{v}_{t_0}$$
$$\mathbf{v}_{t_0+h} = \mathbf{v}_{t_0} + h\frac{1}{m}\mathbf{F}_{t_0}(\mathbf{x}_{t_0}, \mathbf{v}_{t_0})$$

• Euler step from $t_0 + h$ to $t_0 + 2h$

$$\mathbf{x}_{t_0+2h} = \mathbf{x}_{t_0+h} + h\mathbf{v}_{t_0+h}$$
$$\mathbf{v}_{t_0+2h} = \mathbf{v}_{t_0+h} + h\frac{1}{m}\mathbf{F}_{t_0+h}(\mathbf{x}_{t_0+h}, \mathbf{v}_{t_0+h})$$

- the position update depends on velocity
- the velocity update depends on position and velocity

Accuracy and Stability

- discretization error is defined as the difference between the solution of the ODE and the solution of the FDE
- the FDE is consistent, if the discretization error vanishes if the time step h approaches zero
- the FDE is stable, if previously introduced errors (discretization, round-off) do not grow within a simulation step
- the FDE is convergent, if the solution of the FDE approaches the solution of the ODE

Accuracy and Stability

- although the discretization error is diminished by smaller time steps in consistent schemes, the discretization error is introduced in each step of the FD scheme
- if previously introduced discretization errors are not amplified by the FD scheme, then it is stable
- consistent and stable schemes are convergent

Stability

- if stability is influenced by the time step, the FD scheme is conditionally stable
- if the FD scheme is stable or unstable for arbitrary time steps, it is unconditionally stable or unstable
- ODE, FDE and the parameters influence the stability of a system
- schemes with improved stability work with larger time steps

Time Step

- larger time steps typically speed up a simulation
- smaller time steps can improve the stability
- arbitrarily small time steps are not feasible due to round-off errors
 - for larger time steps,
 the error is dominated by the discretization error
 - for smaller time steps, the error is dominated by round-off errors
- performance of an FD scheme is trade-off between error order in terms of the time step and computing complexity

University of Freiburg – Computer Science Department – Computer Graphics - 23

FREIBURG

Second-Order Runge-Kutta Midpoint Method

- compute the derivative at t_o
- approximate f (t₀ +h) using the derivative at t₀

- compute the derivative at t_o
- compute $f(t_0 + h/2)$
- compute the derivative at $t_0 + h/2$
- approximate $f(t_0 + h)$ using the derivative at $t_0 + h/2$

Second-Order Runge-Kutta Midpoint Method

$$\dot{\mathbf{x}} = \mathbf{v}_t$$
 $\dot{\mathbf{v}}_{\mathbf{x}_t, \mathbf{v}_t} = \frac{1}{m} \mathbf{F}_{\mathbf{x}_t, \mathbf{v}_t}$

- compute x'(t)
- compute v'(t)
- compute x'(t+h/2)
- compute v'(t+h/2)
 with x(t+h/2) and v(t+h/2)
- compute $\mathbf{x}(t+h)$ with $\mathbf{x}'(t+h/2)$ $\mathbf{x}_{t+h} = \mathbf{x}_t + h\mathbf{k}_2$
- compute $\mathbf{v}(t+h)$ with $\mathbf{v}'(t+h/2)$ $\mathbf{v}_{t+h} = \mathbf{v}_t + h\mathbf{l}_2$

 \mathbf{k}_1

 $= \dot{\mathbf{x}}_t$

 $\mathbf{l}_1 = \dot{\mathbf{v}}_{\mathbf{x}_t,\mathbf{v}_t}$

 $\mathbf{k}_2 = \dot{\mathbf{x}}_t + \mathbf{l}_1 \frac{h}{2}$

 $\mathbf{l}_2 = \dot{\mathbf{v}}_{\mathbf{x}_t + \mathbf{k}_1 rac{h}{2}, \mathbf{k}_2}$

Second-Order Runge-Kutta Heun

$$\dot{\mathbf{x}} = \mathbf{v}_t$$
 $\dot{\mathbf{v}}_{\mathbf{x}_t, \mathbf{v}_t} = \frac{1}{m} \mathbf{F}_{\mathbf{x}_t, \mathbf{v}_t}$

- compute x'(t)
- compute v'(t)
- compute x'(t+h)
- compute v'(t+h)
- c. x(t+h) with x'(t) and x'(t+h)
- c. v(t+h) with v'(t) and v'(t+h)

 $\mathbf{k}_{1} = \dot{\mathbf{x}}_{t}$ $\mathbf{l}_{1} = \dot{\mathbf{v}}_{\mathbf{x}_{t},\mathbf{v}_{t}}$ $\mathbf{k}_{2} = \dot{\mathbf{x}}_{t} + \mathbf{l}_{1}h$ $\mathbf{l}_{2} = \dot{\mathbf{v}}_{\mathbf{x}_{t}+\mathbf{k}_{1}h,\mathbf{k}_{2}}$ $\mathbf{x}_{t+h} = \mathbf{x}_{t} + h(\frac{1}{2}\mathbf{k}_{1} + \frac{1}{2}\mathbf{k}_{2})$ $\mathbf{v}_{t+h} = \mathbf{v}_{t} + h(\frac{1}{2}\mathbf{l}_{1} + \frac{1}{2}\mathbf{l}_{2})$

Second-Order Runge-Kutta Ralston Method

$$\dot{\mathbf{x}} = \mathbf{v}_t$$
 $\dot{\mathbf{v}}_{\mathbf{x}_t, \mathbf{v}_t} = \frac{1}{m} \mathbf{F}_{\mathbf{x}_t, \mathbf{v}_t}$

- compute x'(t)
- compute v'(t)
- compute x'(t+3h/4)
- compute v'(t+3h/4) with x(t+3h/4) and v(t+3h/4)
- c. x(t+h) with x'(t) and x'(t+3h/4)
- c. $\mathbf{v}(t+h)$ with $\mathbf{v}'(t)$ and $\mathbf{v}'(t+3h/4)$ $\mathbf{v}_{t+h} = \mathbf{v}_t + h(\frac{1}{3}\mathbf{l}_1 + \frac{2}{3}\mathbf{l}_2)$

 $\mathbf{k}_{1} = \dot{\mathbf{x}}_{t}$ $\mathbf{l}_{1} = \dot{\mathbf{v}}_{\mathbf{x}_{t},\mathbf{v}_{t}}$ $\mathbf{k}_{2} = \dot{\mathbf{x}}_{t} + \mathbf{l}_{1}\frac{3}{4}h$ $\mathbf{l}_{2} = \dot{\mathbf{v}}_{\mathbf{x}_{t}+\mathbf{k}_{1}}\frac{3}{4}h,\mathbf{k}_{2}$ $\mathbf{x}_{t+h} = \mathbf{x}_{t} + h(\frac{1}{3}\mathbf{k}_{1} + \frac{2}{3}\mathbf{k}_{2})$ $\mathbf{x}_{t+h} = \mathbf{k}(\frac{1}{3}\mathbf{k}_{1} + \frac{2}{3}\mathbf{k}_{2})$

Fourth-Order Runge-Kutta Runge

- compute $f'(t_0)$ (1)
- compute $f(t_0 + h/2)$ with $f(t_0)$ and $f'(t_0)$
- compute $f'(t_0 + h/2)$ (2)
- compute $f(t_0+h/2)$ with $f(t_0)$ and $f'(t_0+h/2)$
- compute $f'(t_0 + h/2)$ (3)
- compute f(t₀+h) with f (t₀) and f'(t₀+h/2)
- compute $f'(t_o + h)$ (4)
- compute f(t₀+h) with f (t₀) and a weighted average of all derivatives (1) – (4)

University of Freiburg – Computer Science Department – Computer Graphics - 28

Fourth-Order Runge-Kutta Runge

- four derivative computations per time step
- error $O(h^5)$ $\mathbf{k}_3 = \dot{\mathbf{x}}_t + \mathbf{l}_2 \frac{\mathbf{l}}{2}h$ $\mathbf{k}_1 = \dot{\mathbf{x}}_t$ $\mathbf{l}_1 = \dot{\mathbf{v}}_{\mathbf{x}_t,\mathbf{v}_t}$ $\mathbf{l}_3 = \dot{\mathbf{v}}_{\mathbf{x}_t + \mathbf{k}_2 \frac{1}{2}h, \mathbf{k}_3}$ $\mathbf{k}_2 = \dot{\mathbf{x}}_t + \mathbf{l}_1 \frac{1}{2}h$ $\mathbf{k}_4 = \dot{\mathbf{x}}_t + \mathbf{l}_3 h$ $\mathbf{l}_4 = \dot{\mathbf{v}}_{\mathbf{x}_t + \mathbf{k}_3 h, \mathbf{k}_4}$ $\mathbf{l}_2 = \dot{\mathbf{v}}_{\mathbf{x}_t + \mathbf{k}_1 \frac{1}{2}h, \mathbf{k}_2}$ $\mathbf{x}_{t+h} = \mathbf{x}_t + h \frac{1}{6} (\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)$ $\mathbf{v}_{t+h} = \mathbf{v}_t + h \frac{1}{6} (\mathbf{l}_1 + 2\mathbf{l}_2 + 2\mathbf{l}_3 + \mathbf{l}_4)$

University of Freiburg – Computer Science Department – Computer Graphics - 29

UNI FREIBURG

Fourth-Order Runge-Kutta Kutta

- four derivative computations per time step
- error $O(h^5)$ $\mathbf{k}_3 = \dot{\mathbf{x}}_t + \left(-\frac{1}{2}\mathbf{l}_1 + \frac{3}{2}\mathbf{l}_2\right)\frac{2}{2}h$ $\mathbf{k}_1 = \dot{\mathbf{x}}_t$ $\mathbf{l}_1 = \dot{\mathbf{v}}_{\mathbf{x}_t,\mathbf{v}_t}$ $\mathbf{l}_3 = \dot{\mathbf{v}}_{\mathbf{x}_t + (-\frac{1}{2}\mathbf{k}_1 + \frac{3}{2}\mathbf{k}_2)\frac{2}{3}h, \mathbf{k}_3}$ $\mathbf{k}_2 = \dot{\mathbf{x}}_t + \mathbf{l}_1 \frac{1}{3}h$ $\mathbf{k}_4 = \dot{\mathbf{x}}_t + (\mathbf{l}_1 - \mathbf{l}_2 + \mathbf{l}_3)h$ $\mathbf{l}_4 = \dot{\mathbf{v}}_{\mathbf{x}_t + (\mathbf{k}_1 - \mathbf{k}_2 + \mathbf{k}_3)h, \mathbf{k}_4}$ $\mathbf{l}_2 = \dot{\mathbf{v}}_{\mathbf{x}_t + \mathbf{k}_1 \frac{1}{2}h, \mathbf{k}_2}$ $\mathbf{x}_{t+h} = \mathbf{x}_t + h \frac{1}{8} (\mathbf{k}_1 + 3\mathbf{k}_2 + 3\mathbf{k}_3 + \mathbf{k}_4)$ $\mathbf{v}_{t+h} = \mathbf{v}_t + h \frac{1}{8} (\mathbf{l}_1 + 3\mathbf{l}_2 + 3\mathbf{l}_3 + \mathbf{l}_4)$ UNI FREIBURG

University of Freiburg – Computer Science Department – Computer Graphics - 30

Performance

Euler	Runge-Kutta
• one computation of the derivative per time step	• two (four) computations of the derivative per time step
• error $O(h^2)$	• error $O(h^3), O(h^5)$

• allows larger time steps

BURG

- similar performance if the time step for RK 2 is twice the time step for Euler
- Does RK allow for faster simulations than Euler?

Implementation

Euler

- one function evaluation
- force computation
- position and velocity update
- Runge-Kutta
 - multiple function evaluations
 - computation of auxiliary forces, positions, velocities
 - once for second order
 - three times for fourth order
 - position and velocity update

BURG

Outline

- introduction
- particle motion
- finite differences
- system of first order ODEs
 - explicit approaches
 - predictor corrector approaches
 - implicit approaches
- second order ODE

Predictor-Corrector Methods

- predict a value from current (and previous) derivatives
- correct the predicted value with its derivative
- second-order Adams-Bashforth predictor

$$f_{t+h} = f_t + h\frac{1}{2}(3\dot{f}_t - \dot{f}_{t-h}) + O(h^3)$$

- second-order Adams-Moulton corrector $f_{t+h} = f_t + h \frac{1}{2} (3\dot{f}_{t+h} \dot{f}_t) + O(h^3)$
- based on Lagrange polynomials or Taylor approximations
- can be efficiently implemented with two derivative computations per simulation step
- requires values at previous time steps, not self-starting

University of Freiburg – Computer Science Department – Computer Graphics - 34

Adams-Bashforth Predictors

$$\begin{split} f_{t+h} &= f_t + h\dot{f}_t + O(h^2) \\ f_{t+h} &= f_t + h\frac{1}{2}(3\dot{f}_t - \dot{f}_{t-h}) + O(h^3) \\ f_{t+h} &= f_t + h\frac{1}{12}(23\dot{f}_t - 16\dot{f}_{t-h} + 5\dot{f}_{t-2h}) + O(h^4) \\ f_{t+h} &= f_t + h\frac{1}{24}(55\dot{f}_t - 59\dot{f}_{t-h} + 37\dot{f}_{t-2h} - 9\dot{f}_{t-3h}) + O(h^5) \\ f_{t+h} &= f_t + h\frac{1}{720}(1901\dot{f}_t - 2774\dot{f}_{t-h} + 2616\dot{f}_{t-2h} - 1274\dot{f}_{t-3h} + 251\dot{f}_{t-4h}) \\ &+ O(h^6) \end{split}$$

University of Freiburg – Computer Science Department – Computer Graphics - 35

. . .

UNI FREIBURG

Adams-Moulton Correctors

. . .

$$\begin{split} f_{t+h} &= f_t + h\dot{f}_{t+h} + O(h^2) \\ f_{t+h} &= f_t + h\frac{1}{2}(\dot{f}_{t+h} + \dot{f}_t) + O(h^3) \\ f_{t+h} &= f_t + h\frac{1}{12}(5\dot{f}_{t+h} + 8\dot{f}_t - \dot{f}_{t-h}) + O(h^4) \\ f_{t+h} &= f_t + h\frac{1}{24}(9\dot{f}_{t+h} + 19\dot{f}_t - 5\dot{f}_{t-h} + \dot{f}_{t-2h}) + O(h^5) \\ f_{t+h} &= f_t + h\frac{1}{720}(251\dot{f}_{t+h} + 646\dot{f}_t - 264\dot{f}_{t-h} + 106\dot{f}_{t-2h} - 19\dot{f}_{t-3h}) \\ &+ O(h^6) \end{split}$$

UNI FREIBURG

Outline

- introduction
- particle motion
- finite differences
- system of first order ODEs
 - explicit approaches
 - predictor corrector approaches
 - implicit approaches
- second order ODE

Explicit and Implicit Integration

explicit Euler

$$\mathbf{x}_{t+h} = \mathbf{x}_t + h\mathbf{v}_t$$
$$\mathbf{v}_{t+h} = \mathbf{v}_t + h\frac{1}{m}\mathbf{F}_t$$

- one unknown per equation
- direct calculation of x(t+h) and v(t+h)
- non-linear equations have no effect on the approach
- can handle non-analytical, procedural forces

implicit Euler

$$\mathbf{x}_{t+h} = \mathbf{x}_t + h\mathbf{v}_{t+h}$$

$$\mathbf{v}_{t+h} = \mathbf{v}_t + h \frac{1}{m} \mathbf{F}_{t+h}$$

- system of algebraic equations with many unknowns
- simultaneous computation of x(t+h) and v(t+h)
- solution of a system of equations
- non-linear equations are commonly linearized to get a system of linear equations

Linearization of Scalar Functions

one-dimensional scalar field

$$f_{x+h} = f_x + h\dot{f}_x + O(h^2)$$

- multi-dimensional scalar field
 $f_{\mathbf{x}+\mathbf{h}} = f_{\mathbf{x}} + \mathbf{h} \cdot \operatorname{grad} f_{\mathbf{x}} + O(\|\mathbf{h}\|^2)$
- gradient

grad
$$f_{\mathbf{x}} = \nabla f_{\mathbf{x}} = \left(\frac{\partial f_{\mathbf{x}}}{\partial x_1}, \frac{\partial f_{\mathbf{x}}}{\partial x_2}, \dots, \frac{\partial f_{\mathbf{x}}}{\partial x_n}\right)^{\mathrm{T}}$$

nabla, del

$$\nabla = \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots, \frac{\partial}{\partial x_n}\right)^{\mathsf{T}}$$

FREIBURG

Linearization of Vector Fields

- multi-dimensional vector field
 $\mathbf{F}_{\mathbf{x}+\mathbf{h}} = \mathbf{F}_{\mathbf{x}} + \mathbf{J}_{\mathbf{F}_{\mathbf{x}}}\mathbf{h} + O(\|\mathbf{h}\|^2)$
- Jacobi matrix

$$\mathbf{J}_{\mathbf{F}_{vx}} = \frac{\partial \mathbf{F}_{\mathbf{x}}}{\partial \mathbf{x}} = \begin{pmatrix} \operatorname{grad}^{\mathrm{T}} F_{1,\mathbf{x}} \\ \dots \\ \operatorname{grad}^{\mathrm{T}} F_{m,\mathbf{x}} \end{pmatrix} = \begin{pmatrix} \frac{\partial F_{1,\mathbf{x}}}{\partial x_{1}} & \cdots & \frac{\partial F_{1,\mathbf{x}}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{m,\mathbf{x}}}{\partial x_{1}} & \cdots & \frac{\partial F_{m,\mathbf{x}}}{\partial x_{n}} \end{pmatrix}$$

Implicit Integration Theta Scheme

general form

$$\mathbf{x}_{t+h} = \mathbf{x}_t + h((1-\theta)\mathbf{v}_t + \theta\mathbf{v}_{t+h})$$

$$\mathbf{v}_{t+h} = \mathbf{v}_t + h((1-\theta)\frac{\mathbf{F}_t}{m} + \theta\frac{\mathbf{F}_{t+h}}{m})$$

- explicit Euler $\theta = 0$
- implicit Euler $\theta = 1$
- Crank Nicolson $\theta = 0.5$

Theta Scheme Example Implementation

• rewriting the problem for $\theta = 0.5$ $m\mathbf{v}_{t+h} = m\mathbf{v}_t + \frac{h}{2}(\mathbf{F}_{\mathbf{x}_t} + \mathbf{F}_{\mathbf{x}_{t+h}})$

In this example, force **F** depends on **x**, not on **v**.

> JNI REIBURG

- force linearization $\mathbf{F}_{\mathbf{x}_{t+h}} = \mathbf{F}_{\mathbf{x}_t + \frac{h}{2}(\mathbf{v}_t + \mathbf{v}_{t+h})} \approx \mathbf{F}_{\mathbf{x}_t} + \frac{\partial \mathbf{F}_{\mathbf{x}_t}}{\partial \mathbf{x}} \cdot \frac{h}{2} \cdot (\mathbf{v}_t + \mathbf{v}_{t+h})$
- solving a linear system for \mathbf{v}_{t+h} $\left[m\mathbf{I} - \frac{h^2}{4} \cdot \frac{\partial \mathbf{F}_{\mathbf{x}_t}}{\partial \mathbf{x}}\right] \cdot \mathbf{v}_{t+h} \approx m \cdot \mathbf{v}_t + h \cdot \mathbf{F}_{\mathbf{x}_t} + \frac{\partial \mathbf{F}_{\mathbf{x}_t}}{\partial \mathbf{x}} \cdot \frac{h^2}{4} \mathbf{v}_t$

Theta Scheme Conjugate Gradient

- linear system $\mathbf{A} \cdot \mathbf{v} = \mathbf{b}$
- gradient of a function $\nabla \mathbf{f}(\mathbf{v}) = \mathbf{A} \cdot \mathbf{v} \mathbf{b}$
 - with $abla \mathbf{f}(\mathbf{v}) = \mathbf{0}$
- iterative solution for \mathbf{v} with initial value \mathbf{v}_0

$$\mathbf{v}_{i+1} = \mathbf{v}_i + \alpha \cdot \mathbf{w}(\nabla \mathbf{f}(\mathbf{v}_i))$$

Conjugate Gradient Method

- $v_0 = v(t)$
- direction d
- residual r
- step size α
- $\mathbf{v}(t+h) = \mathbf{v}_i$

 $\mathbf{d}_0 = \mathbf{r}_0 = \mathbf{b} - \mathbf{A} \cdot \mathbf{v}_0$

$$\alpha = \frac{\mathbf{r}_i^{\mathrm{T}} \mathbf{r}_i}{\mathbf{d}_i^{\mathrm{T}} \mathbf{A} \mathbf{d}_i}$$

$$\mathbf{v}_{i+1} = \mathbf{v}_i + \alpha \mathbf{d}_i$$

 $\mathbf{r}_{i+1} = \mathbf{r}_i - \alpha \mathbf{A} \mathbf{d}_i$

 $\mathbf{d}_{i+1} = \mathbf{r}_{i+1} + \frac{\mathbf{r}_{i+1}^{\mathrm{T}}\mathbf{r}_{i+1}}{\mathbf{r}_{i}^{\mathrm{T}}\mathbf{r}_{i}}\mathbf{d}_{i}$

- A is symmetric, positive-definite
- -r₀, -d₀ gradient of function f
- \mathbf{d}_i , \mathbf{d}_j are conjugate, i.e. $\mathbf{d}_i^{\mathsf{T}} \mathbf{A} \mathbf{d}_j = 0$
- r_i = 0 in maximal n steps,
 if v has n components

University of Freiburg – Computer Science Department – Computer Graphics - 45

Euler-Cromer (semi-implicit)

$$\mathbf{v}_{t+h} = \mathbf{v}_t + h \frac{1}{m} \mathbf{F}_t$$

$$\mathbf{x}_{t+h} = \mathbf{x}_t + h\mathbf{v}_{t+h}$$

Euler	Euler-Cromer
 computeForces(); //F(t) positionEuler(h); //x=x(t+h)=x(t)+ hv(t) velocityEuler(h); //v=v(t+h)=v(t)+ha(t)	 computeForces(); //F(t) velocityEuler(h); //v=v(t+h)=v(t)+ha(t) positionEuler(h); //x=x(t+h)=x(t)+ hv(t+h)

UNI FREIBURG

Leap Frog

$$\mathbf{v}_{t+\frac{h}{2}} = \mathbf{v}_{t-\frac{h}{2}} + h\frac{1}{m}\mathbf{F}_t = \mathbf{v}_{t-\frac{h}{2}} + h\frac{1}{m}\mathbf{F}_{\mathbf{x}_t,\mathbf{v}_t}$$

$$\mathbf{x}_{t+h} = \mathbf{x}_t + h\mathbf{v}_{t+\frac{h}{2}}$$

- error $O(h^3)$
- can generally handle larger time steps h compared to Euler

EulerLeap Frog...initV() // v(0) = v(0) - (h/2)a(0)...computeForces(); //F(t)positionEuler(h); //x=x(t+h)=x(t)+hv(t)computeForces(); //F(t)velocityEuler(h); //v=v(t+h)=v(t)+ha(t)positionEuler(h); //v=v(t+h)=v(t)+ha(t)......

University of Freiburg – Computer Science Department – Computer Graphics - 47

Outline

- introduction
- particle motion
- finite differences
- system of first order ODEs
- second order ODE

Initial Value Problem of Second Order

- function \mathbf{x}_t represents the particle motion
- initial values are given $\mathbf{x}_{t_0}, (\dot{\mathbf{x}}_{t_0})$
- second-order differential equation is given
 $\frac{d^2 \mathbf{x}_t}{dt^2} = \ddot{\mathbf{x}}_t = \frac{1}{m} \mathbf{F}_t$
- at time t_0 , the function and their derivatives are known
- how to compute $\mathbf{x}_{t_0+h}, (\dot{\mathbf{x}}_{t_0+h})$

FREIBURG

Overview of Integration Schemes

integration methods for first-order ODEs

integration methods for second-order ODE (Newton's motion equation)

Euler, Heun, Ralston, Midpoint method, 4th order Runge-Kutta Verlet, velocity Verlet, Beeman, Gear, Euler-Cromer, Leap-Frog

Verlet

• Taylor approximations of \mathbf{x}_{t+h} and \mathbf{x}_{t-h}

$$\mathbf{x}_{t+h} = \mathbf{x}_t + h\mathbf{v}_t + \frac{h^2}{2}\frac{\mathbf{F}_t}{m} + \frac{h^3}{6}\mathbf{x}_t^{(3)} + O(h^4)$$
$$\mathbf{x}_{t-h} = \mathbf{x}_t - h\mathbf{v}_t + \frac{h^2}{2}\frac{\mathbf{F}_t}{m} - \frac{h^3}{6}\mathbf{x}_t^{(3)} + O(h^4)$$

adding both approximations

$$\mathbf{x}_{t+h} = 2\mathbf{x}_t - \mathbf{x}_{t-h} + h^2 \frac{\mathbf{F}_t}{m} + O(h^4)$$

Verlet

- independent of velocity
- one derivative computation per time step
- efficient to compute, comparatively accurate
- third-order in the position
- if required, velocity can be computed, e.g. using

$$\mathbf{v}_{t+h} = \frac{\mathbf{x}_{t+h} - \mathbf{x}_t}{h} + O(h)$$

 velocity is commonly required for collision response or damping

Velocity Verlet

- one force (derivative) computation per time step
- second-order accuracy in position and velocity

$$\mathbf{x}_{t+h} = \mathbf{x}_t + h\mathbf{v}_t + \frac{h^2}{2}\frac{\mathbf{F}_t}{m} + O(h^3)$$

$$\mathbf{v}_{t+h} = \mathbf{v}_t + \frac{h}{2} \left(\frac{\mathbf{F}_t}{m} + \frac{\mathbf{F}_{t+h}}{m} \right) + O(h^3)$$

 F_{t+h} is computed using x_{t+h} , v_{t+h}

IBURG

• equivalent to $\mathbf{v}_{t+\frac{h}{2}} = \mathbf{v}_t + \frac{h}{2} \frac{\mathbf{F}_t}{m}$ $\mathbf{x}_{t+h} = \mathbf{x}_t + h\mathbf{v}_{t+\frac{h}{2}}$ $\mathbf{v}_{t+h} = \mathbf{v}_{t+\frac{h}{2}} + \frac{h}{2} \frac{\mathbf{F}_{t+h}}{m}$

Beeman

- one force (derivative) computation per time step
- efficient to compute
- third-order accuracy in position and velocity $\mathbf{x}_{t+h} = \mathbf{x}_t + h\mathbf{v}_t + h^2 \left(\frac{2}{3}\frac{\mathbf{F}_t}{m} - \frac{1}{6}\frac{\mathbf{F}_{t-h}}{m}\right) + O(h^4)$ $\mathbf{v}_{t+h} = \mathbf{v}_t + h \left(\frac{5}{12}\frac{\mathbf{F}_{t+h}}{m} + \frac{2}{3}\frac{\mathbf{F}_t}{m} - \frac{1}{12}\frac{\mathbf{F}_{t-h}}{m}\right) + O(h^4)$
- \mathbf{F}_{t+h} is computed using $\mathbf{x}_{t+h}, \mathbf{v}_{t+h}$

Gear Integration

> UNI FREIBURG

Gear Integration

$$\begin{aligned} \mathbf{x}_{t+h} &= \mathbf{x}_t + \frac{\mathbf{x}_t^{(1)}}{1!}h + \frac{\mathbf{x}_t^{(2)}}{2!}h^2 + \frac{\mathbf{x}_t^{(3)}}{3!}h^3 + \frac{\mathbf{x}_t^{(4)}}{4!}h^4 + \frac{\mathbf{x}_t^{(5)}}{5!}h^5 + \dots \\ \mathbf{r}_{t+h}^0 &= \mathbf{r}_t^0 + \mathbf{r}_t^1 + \mathbf{r}_t^2 + \mathbf{r}_t^3 + \mathbf{r}_t^4 + \mathbf{r}_t^5 + \dots \\ h\mathbf{x}_{t+h}^{(1)} &= h\mathbf{x}_t^{(1)} + h\frac{\mathbf{x}_t^{(2)}}{1!}h + h\frac{\mathbf{x}_t^{(3)}}{2!}h^2 + h\frac{\mathbf{x}_t^{(4)}}{3!}h^3 + h\frac{\mathbf{x}_t^{(5)}}{4!}h^4 + \dots \\ \mathbf{r}_{t+h}^1 &= \mathbf{r}_t^1 + 2\mathbf{r}_t^2 + 3\mathbf{r}_t^3 + 4\mathbf{r}_t^4 + 5\mathbf{r}_t^5 + \dots \\ h\frac{h^2}{2}\mathbf{x}_{t+h}^{(2)} &= \frac{h^2}{2}\mathbf{x}_t^{(2)} + \frac{h^2}{2}\frac{\mathbf{x}_t^{(3)}}{1!}h + \frac{h^2}{2}\frac{\mathbf{x}_t^{(4)}}{2!}h^2 + \frac{h^2}{2}\frac{\mathbf{x}_t^{(5)}}{3!}h^3 + \dots \\ \mathbf{r}_{t+h}^2 &= \mathbf{r}_t^2 + 3\mathbf{r}_t^3 + 6\mathbf{r}_t^4 + 10\mathbf{r}_t^5 + \dots \end{aligned}$$

University of Freiburg – Computer Science Department – Computer Graphics - 56

FREIB

Gear - **Prediction**

$$\mathbf{x}_{t+h} = \mathbf{r}_{t+h}^{0} = \mathbf{r}_{t}^{0} + \mathbf{r}_{t}^{1} + \mathbf{r}_{t}^{2} + \mathbf{r}_{t}^{3} + \mathbf{r}_{t}^{4} + \mathbf{r}_{t}^{5}$$

$$h\mathbf{v}_{t+h} = \mathbf{r}_{t+h}^{1} = \mathbf{r}_{t}^{1} + 2\mathbf{r}_{t}^{2} + 3\mathbf{r}_{t}^{3} + 4\mathbf{r}_{t}^{4} + 5\mathbf{r}_{t}^{5}$$

$$\frac{h^{2}}{2} \frac{\mathbf{F}_{t+h}}{m} = \mathbf{r}_{t+h}^{2} = \mathbf{r}_{t}^{2} + 3\mathbf{r}_{t}^{3} + 6\mathbf{r}_{t}^{4} + 10\mathbf{r}_{t}^{5}$$

$$\mathbf{r}_{t+h}^{3} = \mathbf{r}_{t}^{3} + 4\mathbf{r}_{t}^{4} + 10\mathbf{r}_{t}^{5}$$

$$\mathbf{r}_{t+h}^{4} = \mathbf{r}_{t}^{4} + 5\mathbf{r}_{t}^{5}$$

$$\mathbf{r}_{t+h}^{5} = \mathbf{r}_{t}^{5}$$

University of Freiburg – Computer Science Department – Computer Graphics - 57

UNI FREIBURG

Gear - Correction

• error correction coefficients C_k

k = 0	k = 1	k = 2	k = 3	k = 4	k = 5
$\frac{3}{20}$	$\frac{251}{360}$	1	$\frac{11}{18}$	$\frac{1}{6}$	$\frac{1}{60}$

University of Freiburg – Computer Science Department – Computer Graphics - 58

UNI FREIBURG

Gear - Implementation

- initialization $\mathbf{r}_0^0 = \mathbf{x}_0$ $\mathbf{r}_0^2 = \frac{\mathbf{F}_0}{m} \frac{h^2}{2}$
 - $\mathbf{r}_0^1 = \mathbf{v}_0 h$ $\mathbf{r}_0^3 = \mathbf{r}_0^4 = \mathbf{r}_0^5 = 0$

- integration
 - prediction
 - error estimation
 - correction

$$\mathbf{r}_{t+h}^0 = \mathbf{r}_t^0 + \ldots + \mathbf{r}_t^5$$

$$\mathbf{r}_{t+h}^i = \dots$$

$$\operatorname{error}_{t+h} = \mathbf{r}_{t+h}^2 - \frac{\mathbf{F}_{t+h}}{m} \frac{h^2}{2!}$$

$$\mathbf{r}_{t+h}^k = \mathbf{r}_{t+h}^k - C_k \operatorname{error}_{t+h}$$

UNI

Comparison – Explicit Schemes

method	force comp. per time step	error order position	error order velocity			
Euler	1	1	1			
RK 2 nd order	2	2	2			
RK 4 th order	4	4	4			
Verlet	1	3	1			
Velocity Verlet	1	2	2			
Beeman	1	3	3 מ			

Comparison – Explicit Schemes

- methods for first-order ODEs
 - accuracy corresponds to computing complexity
 - position and velocity have the same error order
- methods for second-order ODEs
 - improved accuracy with minimal computing complexity
 - error order might differ for position and velocity
- implicit methods cannot be compared this way
 - do not only compute forces (derivatives)
 - commonly require to solve a linear system
 - improved stability even for low error orders, implicit Euler with error order one can be unconditionally stable, e. g. for harmonic oscillators (springs)

Advantages / Disadvantages

- explicit methods
 - simple to set up and program
 - fast computation per integration step
 - suitable for parallel architectures
 - small time steps required for stability
 - many computing steps required for a given time interval t
- implicit methods
 - stability is maintained for large time steps
 - require less steps for a given interval t
 - large time steps can cause large truncation errors
 - complicate to set up
 - less flexible, problems with non-analytical forces
 - large computing time per integration step

University of Freiburg – Computer Science Department – Computer Graphics - 62

BURG

Advantages / Disadvantages

- predictor-corrector methods
 - not self-starting
 - have to be re-initialized in case of discontinuities,
 - e.g. due to collision response
- in general, implicit methods are more robust (stable) compared to explicit methods
 - if an explicit scheme is not conditionally or unconditionally stable it cannot be used regardless of its efficiency

BURG

- explicit methods can be computed efficiently which is essential if frequent updates are required
 - if an implicit scheme cannot be computed at interactive rates, it cannot be used in interactive applications regardless of the time step University of Freiburg – Computer Science Department – Computer Graphics - 63

Summary

- motion equation for a mass point
 - second-order differential equation
 - coupled system of first-order differential equations
- numerical integration
 - initial values \mathbf{x}_t and \mathbf{v}_t
 - approximate integration of **v** and **x** through time with time step *h*
- integration schemes
 - Euler, Runge-Kutta 2nd, Runge-Kutta 4th
 - Crank-Nicolson, implicit Euler, Euler-Cromer, Leap-Frog
 - Gear, Verlet, velocity Verlet, Beeman
- trade-off between accuracy and computing cost
- goal: maximizing the ratio of time step and computing cost