## Simple Equilibrium with Multiple Reactions

The species  $C_3H_4$  comes in three common isomers:



If we buy a bottle of allene and heat it to 600 K, what is the composition of the gas? Assume P = 1 atm.

## SOLUTION:

We have three possible reactions here:  $A \leftrightarrow B$ ,  $B \leftrightarrow C$ ,  $A \leftrightarrow C$ , but only two are independent, since we can write:  $A \leftrightarrow B + B \leftrightarrow C = A \leftrightarrow C$ . So we can choose any two of the three for our analysis. We'll select  $A \leftrightarrow B$  (call it reaction 1), and  $B \leftrightarrow C$  (reaction 2).

In this very simple case, we don't need to deal with advancements since our expressions for the equilibrium constant give us everything we need:

$$K_{p1} = \frac{P_B}{P_A} \qquad \qquad K_{p2} = \frac{P_C}{P_B}$$

and we also have the sum of pressures equals 1 atm. So we need to get the  $K_ps$ , and we'll be all set. For  $K_p$ , recall that:

$$K_{p} = \exp\left(\frac{-\Delta G^{\circ}}{RT}\right) = \exp\left(\frac{-\sum \mu_{i}^{\circ} \nu_{i}}{RT}\right) = \exp\left(-\sum \nu_{i} (\mu_{i}^{\circ} / RT)\right) = \exp\left(-\sum \nu_{i} (\frac{h_{i}}{RT} - \frac{s_{i}^{\circ}}{R})\right)$$

In this form, it's easy to use the property coefficients directly to get the equilibrium constant. Here are the data from Kurucz:

| H4C3 PROPYNE    | т 2/90н 4с      | 3 0 0G         | 200.000 6000.000 1000.        | 1 |
|-----------------|-----------------|----------------|-------------------------------|---|
| 0.60252400E+01  | 0.11336542E-01- | 0.40223391E-05 | 0.64376063E-09-0.38299635E-13 | 2 |
| 0.19620942E+05  | -0.86043785E+01 | 0.26803869E+01 | 0.15799651E-01 0.25070596E-05 | 3 |
| -0.13657623E-07 | 0.66154285E-11  | 0.20802374E+05 | 0.98769351E+01 0.22302059E+05 | 4 |
| C3H4 ALLENE     | L 8/89C 3H      | 4 0 0g         | 200.000 6000.000 1000.        | 1 |
| 0.63168722E+01  | 0.11133728E-01- | 0.39629378E-05 | 0.63564238E-09-0.37875540E-13 | 2 |
| 0.20117495E+05  | -0.10995766E+02 | 0.26130445E+01 | 0.12122575E-01 0.18539880E-04 | 3 |
| -0.34525149E-07 | 0.15335079E-10  | 0.21541567E+05 | 0.10226139E+02 0.22962267E+05 | 4 |
| C3H4 cyPropene  | т 7/11с 3.н     | 4. 0. 0.G      | 200.000 6000.000 1000.        | 1 |
| 6.28078872E+00  | 1.12393798E-02- | 4.01957416E-06 | 6.46920405E-10-3.86433056E-14 | 2 |
| 3.11629635E+04  | -1.11420363E+01 | 2.24666571E+00 | 5.76237942E-03 4.42080338E-05 | 3 |
| -6.62906810E-08 | 2.81824735E-11  | 3.29498944E+04 | 1.33451493E+01 3.41487352E+04 | 4 |

We can make a simple spreadsheet to do the calculations for us using the low range coefficients (we're between 200 and 1000 K in this problem). Here's the spreadsheet:

|                       | ALLENE      | PROPYNE     | cyPropene   |
|-----------------------|-------------|-------------|-------------|
| a1                    | 2.6804E+00  | 2.6130E+00  | 2.2467E+00  |
| a2                    | 1.5800E-02  | 1.2123E-02  | 5.7624E-03  |
| a3                    | 2.5071E-06  | 1.8540E-05  | 4.4208E-05  |
| a4                    | -1.3658E-08 | -3.4525E-08 | -6.6291E-08 |
| a5                    | 6.6154E-12  | 1.5335E-11  | 2.8182E-11  |
| a6                    | 2.0802E+04  | 2.1542E+04  | 3.2950E+04  |
| a7                    | 9.8769E+00  | 1.0226E+01  | 1.3345E+01  |
|                       |             |             |             |
| Т(К)                  | 600         | 600         | 600         |
|                       |             |             |             |
| c <sub>p</sub> /R     | 1.0970E+01  | 1.1091E+01  | 1.0953E+01  |
| h/RT                  | 4.1826E+01  | 4.2910E+01  | 6.1348E+01  |
| s°/R                  | 3.6185E+01  | 3.5563E+01  | 3.5272E+01  |
|                       |             |             |             |
| μ°/RT                 | 5.6405E+00  | 7.3470E+00  | 2.6076E+01  |
|                       |             |             |             |
| $K_p A \rightarrow B$ | 0.181501323 |             |             |
| $K_p B \rightarrow C$ | 7.34911E-09 |             |             |

So the pressure of B is 0.18 times that of A, and that of C is  $7x10^{-9}$  times that of B. Some quick substitutions yield:

 $P_{Allene} = .846 \text{ atm}$   $P_{Propyne} = .154 \text{ atm}$   $P_{Cyclo-Propene} = 1 \times 10^{-9} \text{ atm}$