Simple Equilibrium with Multiple Reactions

The species $\mathrm{C}_{3} \mathrm{H}_{4}$ comes in three common isomers:

Allene (Propadiene)
A

Propyne (Methyacetylene)
B

Cyclo-Propene
C

If we buy a bottle of allene and heat it to 600 K , what is the composition of the gas? Assume $\mathrm{P}=1 \mathrm{~atm}$.

SOLUTION:

We have three possible reactions here: $\mathrm{A} \leftrightarrow \mathrm{B}, \mathrm{B} \leftrightarrow \mathrm{C}, \mathrm{A} \leftrightarrow \mathrm{C}$, but only two are independent, since we can write: $\mathrm{A} \leftrightarrow \mathrm{B}+\mathrm{B} \leftrightarrow \mathrm{C}=\mathrm{A} \leftrightarrow \mathrm{C}$. So we can choose any two of the three for our analysis. We'll select $\mathrm{A} \leftrightarrow \mathrm{B}$ (call it reaction 1), and $B \leftrightarrow C$ (reaction 2).

In this very simple case, we don't need to deal with advancements since our expressions for the equilibrium constant give us everything we need:

$$
K_{p 1}=\frac{P_{B}}{P_{A}} \quad K_{p 2}=\frac{P_{C}}{P_{B}}
$$

and we also have the sum of pressures equals 1 atm . So we need to get the $\mathrm{K}_{\mathrm{p}} \mathrm{s}$, and we'll be all set. For K_{p}, recall that:

$$
K_{p}=\exp \left(\frac{-\Delta G^{\circ}}{R T}\right)=\exp \left(\frac{-\sum \mu_{i}^{\circ} v_{i}}{R T}\right)=\exp \left(-\sum v_{\mathrm{i}}\left(\mu_{i}^{\circ} / R T\right)\right)=\exp \left(-\sum v_{\mathrm{i}}\left(\frac{h_{i}}{R T}-\frac{s_{i}^{\circ}}{R}\right)\right)
$$

In this form, it's easy to use the property coefficients directly to get the equilibrium constant. Here are the data from Kurucz:

We can make a simple spreadsheet to do the calculations for us using the low range coefficients (we're between 200 and 1000 K in this problem). Here's the spreadsheet:

	ALLENE	PROPYNE	cyPropene
a1	$2.6804 \mathrm{E}+00$	$2.6130 \mathrm{E}+00$	$2.2467 \mathrm{E}+00$
a 2	$1.5800 \mathrm{E}-02$	$1.2123 \mathrm{E}-02$	$5.7624 \mathrm{E}-03$
a 3	$2.5071 \mathrm{E}-06$	$1.8540 \mathrm{E}-05$	$4.4208 \mathrm{E}-05$
a 4	$-1.3658 \mathrm{E}-08$	$-3.4525 \mathrm{E}-08$	$-6.6291 \mathrm{E}-08$
a 5	$6.6154 \mathrm{E}-12$	$1.5335 \mathrm{E}-11$	$2.8182 \mathrm{E}-11$
a 6	$2.0802 \mathrm{E}+04$	$2.1542 \mathrm{E}+04$	$3.2950 \mathrm{E}+04$
a 7	$9.8769 \mathrm{E}+00$	$1.0226 \mathrm{E}+01$	$1.3345 \mathrm{E}+01$
$\mathrm{~T}(\mathrm{~K})$	600	600	600
$\mathrm{c}_{\mathrm{p}} / \mathrm{R}$	$1.0970 \mathrm{E}+01$	$1.1091 \mathrm{E}+01$	$1.0953 \mathrm{E}+01$
$\mathrm{~h} / \mathrm{RT}$	$4.1826 \mathrm{E}+01$	$4.2910 \mathrm{E}+01$	$6.1348 \mathrm{E}+01$
$\mathrm{~s}^{\circ} / \mathrm{R}$	$3.6185 \mathrm{E}+01$	$3.5563 \mathrm{E}+01$	$3.5272 \mathrm{E}+01$
$\mu^{\circ} / \mathrm{RT}$	$5.6405 \mathrm{E}+00$	$7.3470 \mathrm{E}+00$	$2.6076 \mathrm{E}+01$
$\mathrm{~K}_{\mathrm{p}} \mathrm{A} \rightarrow \mathrm{B}$	0.181501323		
$\mathrm{~K}_{\mathrm{p}} \mathrm{B} \rightarrow \mathrm{C}$	$7.34911 \mathrm{E}-09$		

So the pressure of B is 0.18 times that of A , and that of C is 7×10^{-9} times that of B . Some quick substitutions yield:
$\mathrm{P}_{\text {Allene }}=.846 \mathrm{~atm} \quad \mathrm{P}_{\text {Propyne }}=.154 \mathrm{~atm} \quad \mathrm{P}_{\text {Cyclo-Propene }}=1 \times 10^{-9} \mathrm{~atm}$

