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Abstract

Improvement of the overall efficiency of energy infrastructure is one of the main an-

ticipated benefits of the deployment of smart grid technology. Advancement in energy

storage technology and two-way communication in the electric network are indispensable

components to achieve such a vision, while efficient pricing schemes and appropriate stor-

age management are also essential. In this final year project, a universal pricing scheme

is proposed which permits one to indirectly control the energy storage devices in the

grid to achieve a more desirable aggregate demand profile that meets a particular target

of the grid operator such as energy generation cost minimization and carbon emission

reduction. Such a pricing scheme can potentially be applied to control the behavior of

energy storage devices installed for integration of intermittent renewable energy sources

that have permission to grid connection and will have broader applications as an in-

creasing number of novel and low-cost energy storage technologies emerge.



Acknowledgements

I am grateful and would like to express my sincere gratitude to my supervisor Dr. Michael

Z.Q. Chen for his vision and foresight which inspired me to conceive this project and

his invaluable guidance, continuous encouragement and constant support in making

this project possible. Without his advice and assistance it would be a lot tougher to

completion.

I also would like to express very special thanks to Professor James Lam for his insightful

review comments and suggestions.

It is also my duty to record my thankfulness to Mr. Ka Wah Lee who provided very

timely help and supports to me in the design and construction of experimental facilities.

A special appreciation should be given to Mr. Liangyin Zhang for his co-operation,

inspirations and supports during the study.

My sincere thanks go to all lecturers and members of the staff of the Department of

Mechanical Engineering, HKU, who helped and inspired me in many ways and made my

education journey at HKU pleasant and unforgettable.

I acknowledge my sincere indebtedness and gratitude to my parents for their love and

sacrifice throughout my life. They always have faith in my ability and choose to stand

by me even when the whole world is against me.

Lastly I would like to thank any person who contributes to my final year project directly

on indirectly. I would like to acknowledge their comments and suggestions, which was

crucial for the successful completion of this study.

ii



Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vii

Symbols viii

1 Introduction 1

1.1 Project Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Investigated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Project Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Project Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review 11

2.1 Mohsenian-Rad et al.’s Billing Model . . . . . . . . . . . . . . . . . . . . . 11

2.2 Real-Time Pricing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Voice et al.’s Pricing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Model Description 13

3.1 User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Energy Storage Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Grid Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Pricing Scheme 15

4.1 Constant User Load Profile and Renewable Energy Generation . . . . . . 15

4.2 Changing User Load Profile and Renewable Energy Generation . . . . . . 22

4.3 Profit Guarantee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Simulation Results 26

5.1 Simulation Results for Constant User Load Profile and Renewable Energy
Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iii



Contents iv

5.2 Simulation Results for Changing User Load Profile and Renewable Energy
Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Simulation Results after Introduction of Prediction Errors . . . . . . . . . 31

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Conclusion 35

A Pseudocodes for System Operation 36

Bibliography 37



List of Figures

1.1 Energy consumption by power source in 2008. . . . . . . . . . . . . . . . 2

1.2 Oil reserves-to-production (R/P) ratios [24]. . . . . . . . . . . . . . . . . 2

1.3 Distribution of proven oil reserves in 1991, 2001 and 2011 [24]. . . . . . . 2

1.4 Coal reserves-to-production (R/P) ratios [24]. . . . . . . . . . . . . . . . 3

1.5 Distribution of proven coal reserves in 1991, 2001 and 2011 [24]. . . . . . 3

1.6 Natural gas reserves-to-production (R/P) ratios [24]. . . . . . . . . . . . 3

1.7 Distribution of proven natural gas reserves in 1991, 2001 and 2011 [24]. . 4

1.8 Rotterdam & Gulf Coast product prices history [24]. . . . . . . . . . . . 5

1.9 Installed capacity of renewable power (GW) in China [1]. . . . . . . . . . 5

1.10 Share of total energy consumption from renewable sources in European
countries [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.11 Real power output of a 650kW wind turbine. . . . . . . . . . . . . . . . . 6

1.12 Some main functions of smart grid. . . . . . . . . . . . . . . . . . . . . . 8

1.13 Electricity demand profile in a 24-hour period. . . . . . . . . . . . . . . . 9

4.1 Evolution of objective function value after price signals are given. . . . . 16

4.2 Objective function and corresponding polynomial curve fitting. . . . . . . 20

4.3 Pn(Ahn, L) and Qn(Ahn, L) compared with Ln: a) P2(Ah2 , L) and L2 where
Ah2 ≥ 0. b) −P2(Ah2 , L) and −L2 where Ah2 < 0. c) Q3(Ah3 , L) and L3

where Ah3 ≥ 0. d) −Q3(Ah3 , L) and −L3 where Ah3 < 0. . . . . . . . . . . . 21

5.1 Evolution of objective function value (energy generation cost) in the sit-
uation where user load and renewable power generation are all constant. . 27

5.2 Evolution of aggregate demand profile in the situation where both user
load and renewable power generation are constant. . . . . . . . . . . . . . 27

5.3 Comparison of aggregate demand profile without energy storage to opti-
mal aggregate demand profile with energy storage. . . . . . . . . . . . . . 28

5.4 Evolution of cost saving: blue line shows cost difference between no energy
storage participation and with energy storage participation under our
pricing scheme; red line shows cost saved by energy storage changes made
to previous day storage profile under our pricing scheme. . . . . . . . . . 29

5.5 Evolution of aggregate demand profile without energy storage in the sit-
uation where both user load and renewable power generation are changing. 29

5.6 Evolution of aggregate demand profile with energy storage in the situation
where both user load and renewable power generation are changing. . . . 30

5.7 Evolution of aggregate demand profile with ideal efficiency, sufficient
charging and discharging volume as well as energy storage capacity. . . . . 30

5.8 Evolution of aggregate demand profile when standard deviation of the
normal distribution εp yields to equals 0.4. . . . . . . . . . . . . . . . . . . 31

v



List of Figures vi

5.9 Evolution of cost saving when standard deviation of the normal distribu-
tion εp yields to equals 0.4: blue line shows cost difference between no
energy storage participation and with energy storage participation under
our pricing scheme; red line shows cost saved by energy storage changes
made to previous day storage profile under our pricing scheme. . . . . . . 32

5.10 Evolution of aggregate demand profile when standard deviation of the
normal distribution εp yields to equals 0.2. . . . . . . . . . . . . . . . . . . 32

5.11 Evolution of cost saving when standard deviation of the normal distribu-
tion εp yields to equals 0.2: blue line shows cost difference between no
energy storage participation and with energy storage participation under
our pricing scheme; red line shows cost saved by energy storage changes
made to previous day storage profile under our pricing scheme. . . . . . . 33

5.12 Evolution of aggregate demand profile when standard deviation of the
normal distribution εp yields to equals 0.1. . . . . . . . . . . . . . . . . . . 33

5.13 Evolution of cost saving when standard deviation of the normal distribu-
tion εp yields to equals 0.1: blue line shows cost difference between no
energy storage participation and with energy storage participation under
our pricing scheme; red line shows cost saved by energy storage changes
made to previous day storage profile under our pricing scheme. . . . . . . 34



List of Tables

1.1 World Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Advantages and Disadvantages of Ten Energy Storage Technologies . . . 7

vii



Symbols

Symbol Meaning

H = [1, H] Time period

h Time slot

N = {1, ..., N} Set of users

xhn User n’s load during time slot h

M = {1, ...,M} Set of energy storage devices

em Capacity of energy storage device m

am Charge efficiency of energy storage device m

bm Discharge efficiency of energy storage device m

shm Storage profile of m

sh+
m Charging profile of energy storage device m

sh−m Discharging profile of energy storage device m

s+ Charging volume

s− Discharging volume

vhm Energy generation from the renewable energy sources

connected with device m at time slot h

Shm = shm − vhm True energy exchange profile between energy storage

device and grid

e0
m Initial energy storage at the beginning of H
Sm Set of valid storage profiles for energy storage device m

× Cartesian product of vector spaces

S = ×m∈MSm Cartesian product of valid storage profiles of all energy

storage devices in M
lh Aggregate demand in the grid at time slot h∑H

h=1C
h Objective function

ph Pricing function

Bm Amount to be charged from energy storage device m

c Constant set by grid operators to adjust the ratio of

arbitrage benefit to grid benefit

viii



Symbols ix

l̃h Current aggregate demand profile

s̃hm Current storage profile

Xh =
∑

n∈N x
h
n Total user load profile

X́h Prediction for the next day on total user load profile

v́hm Prediction for the next day on renewable energy generation

εp Error of prediction



Dedicated to my parents

x



Chapter 1

Introduction

This chapter discusses about project background, problem investigated in the project,

objectives of the project and project results.

1.1 Project Background

Currently, fossil fuels provide about 80% of world energy supply. As can be seen in

Table 1.1, from 1990 to 2008 although energy generation from renewable power and

nuclear power kept increasing, the world became more and more dependent on fossil

fuels.

Table 1.1: World Energy Consumption

Energy use (PWh)
Fossil Nuclear Renewable Total

1990 83.374 6.113 13.082 102.569
2000 94.493 7.857 15.337 117.687
2008 117.076 8.283 18.492 143.851
Change 2000-2008 22.583 0.426 3.155 26.164

Oil, coal and natural gas are the three major forms of fossil fuel, each of which has a share

of more than 20% in the world energy consumption (Fig.1.1). Reserves-to-production

(R/P) ratios (the reserve portion of the ratio is the amount of a resource known to

exist in an area and to be economically recoverable and the production portion of the

ratio is the amount of resource used in one year at the current rate) and distribution

of proven reserves of the three main fossil fuels are shown in Fig.1.2, Fig.1.3, Fig.1.4,

Fig.1.5, Fig.1.6, Fig.1.7.

1
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Figure 1.1: Energy consumption by power source in 2008.

Figure 1.2: Oil reserves-to-production (R/P) ratios [24].

Figure 1.3: Distribution of proven oil reserves in 1991, 2001 and 2011 [24].
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Figure 1.4: Coal reserves-to-production (R/P) ratios [24].

Figure 1.5: Distribution of proven coal reserves in 1991, 2001 and 2011 [24].

Figure 1.6: Natural gas reserves-to-production (R/P) ratios [24].
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Figure 1.7: Distribution of proven natural gas reserves in 1991, 2001 and 2011 [24].

It is estimated that world proven oil reserves at the end of 2011 reached 1652.6 billion

barrels, which were sufficient to meet 54.2 years of global production. World proven

reserves of coal in 2011 were sufficient to meet 112 years of global production which

is the largest R/P ratios for any fossil fuel. For natural gas, world proven reserves at

end-2011 could meet 63.6 years of production.

Although current fossil fuel reserves can meet world demand for several decades and new

reserves are still being discovered as is shown in the statistical review of world energy,

there are still reasons to care about energy efficiency and develop renewable energy at

present.

The first issue is that investment in the development of renewable energy has to be made

long before all the fossil fuel resources are depleted. Secondly, fossil fuel resources are

not evenly distributed. For example, the majority of oil reserves are in Middle East,

whose share is more than 48% in 2011. It is of strategic importance for countries which

depend largely upon resource imports to fuel their economic growth to develop renewable

energy. And fluctuation of resource price (Fig.1.8) can have tremendous negative impact

to real economy, which can be alleviated by becoming less dependent on non-renewable

resources. Moreover, environmental problems such as air pollution and global warming

caused by burning of fossil fuels are getting more and more serious and have aroused

increasing public concern.

Energy price volatility, supply uncertainties, and environmental concerns are leading

many countries to consider renewable energy to provide affordable energy services that

enhance energy security and reliability. China, in its 12th Five-Year Plan for Renewable

Energy Development, plans to increase its installed capacity of renewable power from

less than 300 GW in 2011 to more than 600 GW by 2020 (Fig.1.9). In 2010, energy

from renewable sources was estimated to have contributed 12.4% of gross final energy
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Figure 1.8: Rotterdam & Gulf Coast product prices history [24].

Figure 1.9: Installed capacity of renewable power (GW) in China [1].

consumption in the EU27. The 2009 Directive on renewable energy set individual tar-

gets for all Member States, such that the EU will reach a 20% share of total energy

consumption from renewable sources by 2020 (Fig.1.10).

Therefore renewable energy sources, such as photovoltaic solar systems and wind tur-

bines, will have growing importance in future power generation systems. However, ex-

ploitation of renewable energy resources can be problematic as renewable power gener-

ation is usually intermittent and variable (Fig.1.11), which could impair power quality

and reliability of the whole grid.

Energy storage systems are increasingly being used to help integrate renewable power

generation into the grid [10–12, 19, 21]. For instance, some battery energy storage

systems are capable of absorbing and delivering both real and reactive power with sub-

second response times, which mitigates the adverse effect on system stability due to the

introduction of renewable power. And different energy storage technologies—for exam-

ple, pumped-hydro energy storage, electrochemical energy storage and supercapacitor—

can be combined in order to give full play to their own characteristics and advantages
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Figure 1.10: Share of total energy consumption from renewable sources in European
countries [2].

Figure 1.11: Real power output of a 650kW wind turbine.
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(Table 1.2). Also, energy storage control systems can be integrated with energy markets

to make more economical use of energy. The purpose is to lower the peak load, which

requires the support of expensive and also carbon intensive peaking power plant gener-

ators, so that both carbon emissions and energy generation costs are lowered. The end

users will definitely benefit as electricity price decreases.

Table 1.2: Advantages and Disadvantages of Ten Energy Storage Technologies

Technology Advantages Disadvantages

Flooded Cell Lead-Acid
Batteries

Mature and inexpen-
sive; readily available

Short life cycle; low en-
ergy density; high main-
tenance costs

Valve Regulated Lead-
Acid Batteries

Lower maintenance
costs than traditional
flooded cell lead-acid
batteries; mature
technology

Less reliable and higher
costs than traditional
flooded cell lead-acid
batteries

Lithium Ion Batteries Higher energy and
power density; high
efficiency

Relatively early stage
technology; special
handling requirements;
high production cost

Vanadium Redox Bat-
teries

Energy capacity and
power can be sized in-
dependently; low main-
tenance; long cycle life

Relatively early stage
technology; high cost;
low energy density

Flywheels High power density;
high cycle life; quick
recharge; independent
energy capacity and
power sizing

Not applicable for long
duration storage appli-
cations; high costs

Superconducting Mag-
netic Energy Storage

High power capacity;
high efficiency

Low energy density;
large parasitic losses;
high production cost

Supercapacitors High power density;
high cycle life; quick
recharge

Low energy density;
high cost

Compressed Air Energy
Storage

Huge energy and power
capacity; long lifetime

Geographically limited;
requires fuel input; low
efficiency

Pumped Hydro Huge energy and power
capacity; long lifetime

Geographically limited;
expensive to site and
build

Hydrogen Fuel Cells High energy density;
scalable

Low efficiency; parasitic
losses

Note, however, that it is still at too early a stage for widespread adoption of small-scale

consumer storage devices, even though the potential has been foreseen [6, 13, 14]. And
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Figure 1.12: Some main functions of smart grid.

cost-effectiveness of energy storage as an arbitrage instrument depends on capital costs,

operations and maintenance costs as well as price incentives from the grid. In most cases

up to now, energy arbitrage as a sole revenue source does not appear to be economically

viable. Additional high-value ancillary services such as smoothing the volatile power

output and voltage regulation need to be bundled [12, 20] while at the same time, more

attractive and efficient pricing schemes have to be provided by the grid [21].

In recent years there has been growing interest in the development of intelligent elec-

tricity network technologies, collectively called the smart grid, which meet the needs

for future energy provision [3]−[9]. A smarter grid is expected to fully accommodate

renewable and traditional energy sources. Moreover, it will make the grid work far more

efficiently by applying tools and technologies available now [4] and potentially reducing

carbon footprint. Fig.1.12 shows some main functions of smart grid.

One of the most important topics in the areas of smart grid is peak curtailment/leveling

based on advancement in energy storage technology and two-way communication in the

electric network. Our project mainly focuses on peak curtailment in the future smart

grid.

1.2 Problem Investigated

Fig.1.13 shows a typical demand profile in the electricity grid. The daytime load is

almost double the night time load. As we can imagine, after the large-scale integration

of renewable power generation, the aggregate profile could be even more irregular.
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Figure 1.13: Electricity demand profile in a 24-hour period.

Peak in demand can bring about many problems. All the facilities in the grid, such

as transformers and transmission lines, have their own capacity. At a peak in demand,

capacity of facilities could be challenged which possibly endangers the reliability of the

grid, and transmission as well as distribution losses are disproportionately high. To

meet the peak demand, peaking power plant generators have to be put into use which

are usually expensive and also carbon intensive. And occasionally the electricity demand

is so high that in order to keep the grid system stability and power quality grid operators

have no choice but to cut off the service. Therefore, it is beneficial and necessary to

flatten the demand.

1.3 Project Objectives

In this project, we focus on the pricing scheme set by grid owners and operators, which

indirectly controls energy storage devices in the grid so that the aggregate demand

profile could be flattened and reliability as well as economics and efficiency of the grid

is improved. Advancement in energy storage technology and two-way communication in

the electric network are necessary preconditions for achieving such a vision.

1.4 Project Results

We propose a new universal pricing scheme for controlling energy storage devices in the

grid, which also takes integration of renewable energy into consideration. It guaran-

tees convergence to the optimal aggregate demand profile which minimizes the convex
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objective function defined by grid operators when user load and renewable energy gen-

eration profile keep constant and each energy storage device is operated optimally in

terms of income maximization. In the situation where user load and renewable energy

generation change from day to day, it can still efficiently reduce the value of the objec-

tive function, which means satisfactorily meeting a particular target of grid operators.

This pricing scheme can be applied to energy storage devices installed for integration

of intermittent renewable energy with permission to grid connection. They are more

economically feasible at current stage as they are used for multiple functions. And as

an increasing number of novel and low-cost energy storage technologies emerge, which

will possibly justify the use of either large-scale or small-scale consumer energy storage

as an arbitrage instrument, our pricing scheme will have much broader applications in

the future.



Chapter 2

Literature Review

There are many pricing schemes available in the smart grid literature [6, 14]−[18], most

of which assume that users or other agents such as energy storage devices in the grid are

all self-interested and try to minimize their payment to grid or maximize their income.

2.1 Mohsenian-Rad et al.’s Billing Model

Mohsenian-Rad et al.’s billing model in [15, 16] assumes that users are charged pro-

portional to their daily energy consumption and total daily charges to the users are

proportional to total daily energy generation costs. It is proved that the Nash equilib-

rium of such a game always exists and is unique. Moreover, the unique Nash equilibrium

is the optimal solution of energy cost minimization problem. Algorithm 1 is executed

by energy consumption scheduler (ECS) of each user in the grid in order to reach the

Nash equilibrium. xn denotes energy consumption schedules of user n.

This model does not welcome the introduction of energy storage devices since they

always increase energy consumption. And shift of load from peak to off-peak periods

brings little immediate gains to load shifters themselves although it benefits the grid

and other users, which implies share of interest.

2.2 Real-Time Pricing Schemes

In [14], price of electricity at certain time interval depends on aggregate demands in the

grid at that time interval. Since aggregate demand profile in the coming day cannot be

known in advance, prediction of market prices is needed for demand side management.

In [17] a price signal for the next 30 minutes time slot is provided at the current time. In

11
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Algorithm 1 : Executed by each user in the grid.

Randomly initialize daily energy consumption.
repeat

At random time instances Do
Solve local optimization problem using interior point method.
if xn changes compared to current schedule then

Update xn according to the new solution.
Broadcast a control message to announce the new schedule to the other

ECS units across the system.
End if

End
if a control message is received then

Update the vector containing the scheduled daily energy consumption for all
other users accordingly.

End if
until no unit announces any new schedule.

order to avoid the situation where agents all switch on their electrical appliances which

results in a peak in demand when they are signalled a low electricity price, an adaptive

mechanism for decentralised demand side management is introduced. First, an agent i

gradually adapts its energy consumption profile di towards the optimal di,∗ as follows:

di(t+ 1) = di(t) +βi(di,∗−di(t)) where βi ∈ (0, 1] defines the learning rate (that is, how

fast the agent reacts to changing conditions). Second, an agent reoptimises its energy

consumption profile on any particular day, with a probability of α ∈ (0, 1).

2.3 Voice et al.’s Pricing Scheme

In [6], Voice et al. propose that at the end of each day price profile for the coming

day based on current loads is announced so that energy storage devices do not need to

speculate on future prices in order to optimize their storage profile in terms of income

maximization in the coming day. As explicit incentives are provided by the pricing

function, a damping term is added to the bill to ensure stability. It is proved that

under this pricing scheme with some strictly increasing differentiable pricing function,

aggregate demand profile converges to a unique equilibrium. A specific example of the

pricing scheme is also provided with pricing functions designed to recover supplier costs.

The behavior of energy storage devices in the grid under this model is more predictable

and controllable for the grid operator. Our pricing scheme adopts the same mechanism

but we mainly focus on the optimality and efficiency of the pricing scheme in terms of

meeting objectives of the grid.



Chapter 3

Model Description

This chapter describes the model used. Consider a smart power system which contains

several users and energy storage devices. We are interested in the storage management

during the time period H = [1, H]. Without loss of generality, we can assume that time

granularity is one hour and H = 24.

3.1 User

Let N = {1, ..., N} denote the set of users and let xhn denote user n’s load during time

slot h. Our pricing scheme is only applied to energy storage devices that have permission

to grid connection. Users can be charged according to other simpler pricing scheme such

as flat pricing or peak load pricing and control of their load profile is not discussed in

this project.

3.2 Energy Storage Device

Let M = {1, ...,M} denote the set of energy storage devices. Assume that they are all

self-interested and try to minimize their own payment or maximize the income. Each

energy storage device m has a capacity of em, charge efficiency of am < 1 and discharge

efficiency of bm < 1. If q amount of energy is consumed to charge the device, only amq

can be stored. Similarly, if q amount of energy is stored, only bmq can be discharged.

Let shm denote the storage profile of m. We have shm = sh+
m −sh−m , sh+

m ·sh−m = 0, ∀h ∈ H,

where sh+
m is the charging profile and sh−m , the discharging profile. 0 ≤ sh+

m ≤ s+, 0 ≤
sh−m ≤ s−, ∀h ∈ H, where s− is the discharging volume and s+ is the charging volume

of the device for one time interval. Let vhm denote possible energy generation from the

13



Chapter 3. Model Description 14

renewable energy sources connected with device m at time slot h. Renewable energy can

be stored into energy storage devices for a later sale or sold to the grid directly. Assume

that energy storage in each device at the end of each day comes back to the same level

as the beginning of the day, ambm
∑H

h=1 s
h+
m =

∑H
h=1 s

h−
m . Apparently

∑H
h=1 s

h
m ≥ 0.

Moreover, energy that can be stored or discharged at time slot h satisfies sh−m /bm ≤
e0
m +

∑h−1
j=1 (ams

j+
m − sj−m /bm), ams

h+
m ≤ em − e0

m −
∑h−1

j=1 (ams
j+
m − sj−m /bm), ∀h ∈ H,

where e0
m is the initial energy storage at the beginning of H. Let Sm represent the set

of valid storage profiles for m, and set S = ×m∈MSm where × denotes the Cartesian

product of vector spaces. The true energy exchange profile between energy storage

device and grid is Shm = shm − vhm.

3.3 Grid Operator

Let lh denote the aggregate demand in the grid at time slot h and by definition lh =∑
m∈M Shm +

∑
n∈N x

h
n, ∀h ∈ H. Grid operators usually have particular targets for

aggregate demand profile. One common design objective in a power distribution system

is energy generation cost minimization: minimize
s∈S

∑H
h=1C

h(lh). Cost function Ch is

assumed to be strictly increasing and convex. Usually, we have Ch(L) = akL
2 +bkL+ck,

where ak > 0 and bk, ck ≥ 0 are predetermined parameters. According to the target

and corresponding objective function, grid operators can adjust pricing scheme to steer

energy storage devices in the grid.



Chapter 4

Pricing Scheme

Our work in this project mainly focuses on finding the most efficient pricing scheme,

under which value of the convex objective function defined by grip operator is minimized

when each energy storage device strives to maximize their income.

Assume that the grid operator announces the pricing scheme for the next day at the

end of each day. Under this assumption, energy storage devices do not need to make

predictions on future market prices in order to optimize their storage profile. And they

are allowed to sell electricity to the grid at the same price as the grid sells electricity

according to the pricing scheme announced.

4.1 Constant User Load Profile and Renewable Energy

Generation

We first consider a situation where the user load profile is constant (user load profile

may vary little from day to day if there is no sudden weather change taking place or

other events which may change user behavior significantly) and so is the renewable

power generation. Define a pricing function ph indicating the price for electricity at

time slot h ∈ H set by the grid operator. Consider the situation where the grid operator

announces the price ph for each h of the coming day. As energy storage devices in the

grid all react to the same price signals in the way that their income is maximized, the

aggregate behavior can be unstable. Fig.4.1 shows the evolution of objective function

value after such price signals are given. The system becomes extremely unstable and

the objective function value oscillates at a higher level after application of the pricing

scheme, which implies that the objectives of grip operator have not been met.

15
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Figure 4.1: Evolution of objective function value after price signals are given.

In [6], Voice et al. propose a pricing mechanism which introduces a damping term to

guarantee stability. That is, each energy storage device m ∈M is charged an additional

fee of
∑H

h=1K(shm − s̃hm)2, where s̃hm is the storage profile of the day before and K > 0.

We employ the same mechanism in our pricing scheme when the objective function takes

the form of
∑H

h=1C
h(lh) =

∑H
h=1(akl

h2
+ bkl

h + ck), where ak > 0 and bk, ck ≥ 0. For

each energy storage device m ∈ M, let Bm denote the amount to be charged for H. If

Bm < 0, device m earns revenue through the daily operation. At the beginning of each

day, every device m makes optimal decision on its storage profile which yields to all the

constraints mentioned before using convex optimization methods so that the aggregate

income in the coming day is maximized.

We propose that at the end of each day, pricing scheme for the next day is announced

and

Bm =

H∑
h=1

Shmp
h +K(shm − s̃hm)2 (4.1)

where Bm is the amount to be charged in the coming day, ph/(2ak l̃
h + bk) = K/akM =

c > 0, c is a constant set by grid operators to adjust the ratio of arbitrage benefit to grid

benefit and has no influence on storage profile, ak, bk come from the objective function∑H
h=1C

h(lh) =
∑H

h=1(akl
h2

+bkl
h+ck), M is the total number of energy storage devices,

and l̃h is the aggregate demand profile in the day before.

We first show that with such a pricing scheme, the objective function is non-increasing

from day to day if all the energy storage devices are operated optimally in terms of
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income maximization.

Theorem 4.1. Given objective function
∑H

h=1C
h(lh) =

∑H
h=1(akl

h2
+ bkl

h + ck) where

ak > 0 and bk, ck ≥ 0, the objective function is non-increasing if pricing scheme (4.1)

is applied and each energy storage device m ∈ M adopts the following optimal storage

profile sm = arg min
sm∈Sm

Bm.

Proof. If device m does not change its storage profile in the coming day, Bm(s̃m) =∑H
h=1 p

h(s̃hm − vhm), where s̃m is the storage profile of m in the day before.

Assume that the new storage profile sm = s̃m+ ∆sm is adopted. If device m is operated

optimally in terms of income maximization, ∆sm will at least keep Bm the same or

possibly decrease Bm.

Bm(s̃m + ∆sm) =
H∑
h=1

ph(s̃hm + ∆shm − vhm) +K
H∑
h=1

∆shm
2

Bm(s̃m + ∆sm)−Bm(s̃m) =

H∑
h=1

ph∆shm +K
H∑
h=1

∆shm
2 ≤ 0

∑
m∈M

(
H∑
h=1

ph∆shm +K
H∑
h=1

∆shm
2
) ≤ 0

By definition lh =
∑

m∈M(shm − vhm) +
∑

n∈N x
h
n and ∆lh =

∑
m∈M∆shm,

∆lh
2 ≤M

∑
m∈M

∆shm
2

where M is the total number of energy storage devices, which implies

H∑
h=1

ph∆lh +
K
M

H∑
h=1

∆lh
2

≤
H∑
h=1

ph
∑
m∈M

∆shm +K
H∑
h=1

∑
m∈M

∆shm
2 ≤ 0

We have ph = K(2ak l̃
h+bk)

akM
, then

H∑
h=1

K(2ak l̃
h + bk)

akM
∆lh +

K
M

H∑
h=1

∆lh
2 ≤ 0

H∑
h=1

(2ak l̃
h + bk)∆l

h + ak

H∑
h=1

∆lh
2 ≤ 0
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H∑
h=1

Ch(l̃h + ∆lh)− Ch(l̃h)

=
H∑
h=1

2ak l̃
h∆lh + ak∆l

h2
+ bk∆l

h ≤ 0

where l̃h + ∆lh is aggregate demand profile in the coming day and the value of the

objective function is reduced or kept the same with the new profile.

It is reasonable to expect that lh > 0, ∀h ∈ H and Ch(lh) > 0. Therefore,
∑H

h=1C
h(lh)

is lower bounded. Since it is non-increasing from day to day, we may conclude that

the objective function and storage profile of each device m ∈ M will all converge to an

equilibrium.

The optimal storage profile solution to the objective function minimization problem and

the minimum objective function value can be achieved in a centralized manner with con-

vex optimization algorithm such as Interior Point Method with all the parameter known.

We then prove that under our pricing scheme, the objective function will converge to

the minimum value calculated centrally.

Theorem 4.2. Given objective function
∑H

h=1C
h(lh) =

∑H
h=1(akl

h2
+ bkl

h + ck) where

ak > 0 and bk, ck ≥ 0, the objective function converges to min
s∈S

∑H
h=1C

h(lh) if pricing

scheme (4.1) is applied and each energy storage device m ∈ M adopts the following

optimal storage profile sm = arg min
sm∈Sm

Bm.

Proof. Assume that l̃h is the current aggregate demand profile, lh
′

the optimal aggre-

gate demand profile, which minimizes the objective function and shm
′

the corresponding

storage profile of each device m when optimal aggregate demand profile is achieved.

H∑
h=1

Ch(lh
′
)− Ch(l̃h) = ε < 0

Let λh = lh
′ − l̃h =

∑
m∈M(shm

′ − s̃hm)

H∑
h=1

2ak l̃
hλh + akλ

h2
+ bkλ

h = ε

H∑
h=1

phλh +
K
M
λh

2
= ε

K
akM
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H∑
h=1

phλh ≤ ε K
akM

Therefore, ∃m such that
∑H

h=1 p
h∆šhm = ε′ < 0, where ∆šhm = shm

′ − s̃hm.

Let ∆ŝhm denote the valid ∆shm which minimizes
∑H

h=1 p
h∆shm+K

∑H
h=1 ∆shm

2
. As stor-

age profile converges, for all ε > 0 there exists a day such that the absolute value of

∆ŝhm after this day is smaller than ε.

|
H∑
h=1

ph∆ŝhm +K
H∑
h=1

∆ŝhm
2| ≤

H∑
h=1

|ph|ε+KHε2

Thus,

min(
H∑
h=1

ph∆shm +K
H∑
h=1

∆shm
2
) =

H∑
h=1

ph∆ŝhm

+K
H∑
h=1

∆ŝhm
2 ≥ −

H∑
h=1

|ph|ε−KHε2

For each m ∈ M, which satisfies
∑H

h=1 p
h∆šhm = ε′ < 0, ∃α0 = − ε′

K
∑H

h=1 ∆šhm
2 > 0 such

that
∑H

h=1 p
h∆šhm +Kα0

∑H
h=1 ∆šhm

2
= 0. If α0 ≥ 1, let ∆shm = 0.5∆šhm so that ∆shm is

surely valid.
∑H

h=1 p
h∆shm+K

∑H
h=1 ∆shm

2
= (0.25−0.5α0)K

∑H
h=1 ∆šhm

2
. Or if α0 < 1,

let ∆shm = 0.5α0∆šhm,
∑H

h=1 p
h∆shm + K

∑H
h=1 ∆shm

2
= −α2

0
4 K

∑H
h=1 ∆šhm

2
. Thus,

min(
∑H

h=1 p
h∆shm +K

∑H
h=1 ∆shm

2
) ≤

{
−α2

0
4 K

∑H
h=1 ∆šhm

2
: 0 < α0 < 1;

(0.25− 0.5α0)K
∑H

h=1 ∆šhm
2

: α0 ≥ 1.

As a result,
∑H

h=1 |ph|ε + KHε2 ≥

{
α2
0

4 K
∑H

h=1 ∆šhm
2

: 0 < α0 < 1;

(−0.25 + 0.5α0)K
∑H

h=1 ∆šhm
2

: α0 ≥ 1.

If α0 → 0, then ε′ → 0 for each m ∈ M satisfying
∑H

h=1 p
h∆šhm = ε′ < 0 since

0 ≤ K
∑H

h=1 ∆šhm
2
< KH(s2

+ + s2
−). Otherwise, ∆šhm converges to 0 and so is ε′ for each

m ∈ M satisfying
∑H

h=1 p
h∆šhm = ε′ < 0. Since

∑H
h=1

∑
m∈M ph∆šhm =

∑H
h=1 p

hλh ≤
ε KakM < 0, ε converges to 0.

The pricing scheme can be further generalized for other convex objective functions. For

grid operators, they may first approximate their own convex objective function by using

a finite number of terms. For example, the function
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Figure 4.2: Objective function and corresponding polynomial curve fitting.

Ch(lh) =

{
1× 105 + 60lh : 0 < lh < 5000 ;

4× 105 + 120lh : 5000 ≤ lh < 8000
shown in Figure 4.2 can be approxi-

mated as Ch(lh) ≈ 8.7264×10−7lh
3−0.0043lh

2
+63.4167lh+1.0101×105, 0 < lh < 8000

by polynomial curve fitting.

Then, more generally,
∑H

h=1C
h(l̃h + ∆lh) − Ch(l̃h) takes the form of

∑H
h=1A

h
1∆lh +

Ah2∆lh
2

+Ah3∆lh
3

+Ah4∆lh
4

+ · · · .

H∑
h=1

Ch(l̃h + ∆lh)− Ch(l̃h) ≤
H∑
h=1

Ah1∆lh +Ah2P2(Ah2 ,∆l
h)

+Ah3Q3(Ah3 ,∆l
h) +Ah4P4(Ah4 ,∆l

h) + · · ·

where

Pn(Ahn, L) =

{
Ln : Ahn ≥ 0 ;

0 : Ahn < 0 .
n > 0, n is even,

Qn(Ahn, L) =


0 : L < 0, Ahn ≥ 0 ;

Ln : L ≥ 0, Ahn ≥ 0 ;

0 : L ≥ 0, Ahn < 0 ;

Ln : L < 0, Ahn < 0 .

n > 1, n is odd.

Figure 4.3 shows some examples of Pn(Ahn, L) and Qn(Ahn, L) with comparison to Ln.

Note that AhnPn(Ahn, L) and AhnQn(Ahn, L) are all convex.
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(a) (b)

(c) (d)

Figure 4.3: Pn(Ah
n, L) and Qn(Ah

n, L) compared with Ln: a) P2(Ah
2 , L) and L2 where

Ah
2 ≥ 0. b) −P2(Ah

2 , L) and −L2 where Ah
2 < 0. c) Q3(Ah

3 , L) and L3 where Ah
3 ≥ 0.

d) −Q3(Ah
3 , L) and −L3 where Ah

3 < 0.

The universal pricing scheme should be:

Bm =
H∑
h=1

Shmp
h +Kh1P2(Ah2 , s

h
m − s̃hm) +Kh2Q3(Ah3 , s

h
m − s̃hm)

+Kh3P4(Ah4 , s
h
m − s̃hm) + · · · (4.2)

where ph/Ah1 = Kh1/Ah2M = Kh2/Ah3M2 = Kh3/Ah4M3 = · · · = Khn/Ahn+1M
n = c > 0,

M is the total number of energy storage devices in the grid. Constant c is set by grid

operators to adjust the ratio of arbitrage benefit to grid benefit and has no influence on

storage profile.

We then prove that with such a pricing scheme, the convex objective function is non-

increasing from day to day if all the energy storage devices are operated optimally in

terms of income maximization.

Theorem 4.3. Given convex objective function
∑H

h=1C
h(lh), the objective function is

non-increasing if pricing scheme (4.2) is applied and each energy storage device m ∈M
adopts the following optimal storage profile sm = arg min

sm∈Sm
Bm.

Proof. Assume new storage profile sm = s̃m + ∆sm is adopted, where s̃m is storage

profile of m in the day before. Then,

Bm(s̃m + ∆sm)−Bm(s̃m) =

H∑
h=1

∆shmp
h +Kh1P2(Ah2 ,∆s

h
m)



Chapter 4. Pricing Scheme 22

+Kh2Q3(Ah3 ,∆s
h
m) +Kh3P4(Ah4 ,∆s

h
m) + · · · ≤ 0

H∑
h=1

Ch(l̃h + ∆lh)− Ch(l̃h) ≤
H∑
h=1

Ah1∆lh +Ah2P2(Ah2 ,∆l
h)

+Ah3Q3(Ah3 ,∆l
h) +Ah4P4(Ah4 ,∆l

h) + · · ·

≤
H∑
h=1

Ah1
∑
m∈M

∆shm +Ah2M
∑
m∈M

P2(Ah2 ,∆s
h
m)

+Ah3M
2
∑
m∈M

Q3(Ah3 ,∆s
h
m) +Ah4M

3
∑
m∈M

P4(Ah4 ,∆s
h
m)

+ · · · ≤ 0

This completes the proof.

Similarly, the convex objective function
∑H

h=1C
h(lh) converges to min

s∈S

∑H
h=1C

h(lh).

The proof is omitted here.

4.2 Changing User Load Profile and Renewable Energy

Generation

For the situation where user load profile and renewable energy generation change from

day to day, we can slightly revise the pricing scheme introduced previously to accommo-

date the changes. Assume that grid operators and energy storage devices have perfect

prediction respectively on the total user load profile Xh =
∑

n∈N x
h
n and renewable

energy generation vhm in the coming day. That is, perfect prediction for the next day

on total user load profile X́h or renewable energy generation v́hm is achieved at the end

of each day. Each device will send their prediction v́hm to grid operator (Algorithm 3),

which will be used as part of the pricing scheme later (Algorithm 2).

For objective function
∑H

h=1C
h(lh) =

∑H
h=1(akl

h2
+ bkl

h + ck), where ak > 0 and

bk, ck ≥ 0, we change the pricing scheme to

Bm =
H∑
h=1

Shmp
h +K(shm − s̃hm)2 (4.3)

where ph/{2ak[X́h+
∑

m∈M(s̃hm− v́hm)]+bk} = K/akM = c > 0 and s̃hm is storage profile

of m in the day before.

In the situation where user load and renewable power profile are constant, we actually

make prediction that user load and renewable generation in the coming day will keep
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the same as in the previous days. Thus to accommodate the changes, we need to replace

l̃h with X́h +
∑

m∈M(s̃hm − v́hm).

Since each energy storage device m is assumed to be operated optimally in terms of

income maximization, if s̃m + ∆sm is adopted as storage profile of next day, Bm(s̃m +

∆sm, v́m)−Bm(s̃m, v́m) ≤ 0. It is easy to show that

H∑
h=1

Ch[X́h +
∑
m∈M

(s̃hm − v́hm + ∆shm)]

−Ch[X́h +
∑
m∈M

(s̃hm − v́hm)] ≤ 0

where X́h +
∑

m∈M(s̃hm − v́hm + ∆shm) is exactly the aggregate demand profile of the

coming day if all the predictions are accurate.

Therefore, under the control of our pricing scheme, value of the objective function can

always be reduced or kept the same when new aggregate demand profile is reached by the

changes of storage profile made according to price signals compared with the situation

where no changes of storage profile are made, if perfect predictions of total user load

and renewable energy generation together with optimal operation of storage devices are

assumed. In most cases the better the prediction made by grid operators on next day

total user load profile, the lower value of objective function can be achieved. However

under this pricing scheme, energy storage device operators have no incentive to make

efforts for accurate prediction of renewable power generation profile in the coming day.

Thus, our pricing scheme can be further revised to

Bm =
H∑
h=1

Shm
K{2ak[X́h +

∑
m∈M(s̃hm − v́hm)] + bk}
akM

+K(shm − s̃hm)2 + J (vhm − v́hm)2 (4.4)

where (vhm − v́hm) is the difference between the true renewable power generation and the

predicted renewable power generation, J > 0 and J (vhm − v́hm)2 provides the incentive

for more accurate prediction.

For more general convex objective functions,

H∑
h=1

Ch[X́h +
∑
m∈M

(s̃hm − v́hm + ∆shm)]− Ch[X́h +
∑
m∈M

(s̃hm − v́hm)]
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takes the form of

H∑
h=1

Ah1
′ ∑
m∈M

∆shm +Ah2
′
(
∑
m∈M

∆shm)2 +Ah3
′
(
∑
m∈M

∆shm)3

+Ah4
′
(
∑
m∈M

∆shm)4 + · · ·

Similarly, to ensure that
∑H

h=1C
h[X́h+

∑
m∈M(s̃hm−v́hm+∆shm)]−Ch[X́h+

∑
m∈M(s̃hm−

v́hm)] ≤ 0, let

Bm =
H∑
h=1

Shmp
h +Kh1P2(Ah2

′
, shm − s̃hm) +Kh2Q3(Ah3

′
, shm − s̃hm)

+Kh3P4(Ah4
′
, shm − s̃hm) + · · · (4.5)

where ph/Ah1
′

= Kh1/Ah2
′
M = Kh2/Ah3

′
M2 = Kh3/Ah4

′
M3 = · · · = Khn/Ahn+1

′
Mn = c >

0. And the incentive for more accurate prediction is provided by the additional term

J (vhm − v́hm)2.

4.3 Profit Guarantee

In some cases where user load profile changes dramatically, Bm > 0 even when the

energy storage device is operated optimally in terms of income maximization. To guar-

antee profit for each energy storage device, our pricing scheme can be extended further.

Assume that Bm is the amount to be charged for m ∈ M in a whole day according to

the pricing scheme introduced in previous sections. Let max(B+
m) denote the maximum

positive daily charge of all m ∈M. If all the daily charges Bm ≤ 0, then max(B+
m) = 0.

Our new pricing scheme gives

Bm
′ = Bm −max(B+

m) ∀m ∈M (4.6)

where Bm
′ is the amount to be charged in the new pricing scheme. Apparently Bm

′ ≤ 0

which guarantees a profit and storage profile of each m ∈ M that minimizes Bm
′ is

exactly the same as the profile minimizing Bm. Thus the change in pricing scheme only

affects revenue of each energy storage device but has no influence on their decision on

storage profile.
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4.4 Summary

We propose a new pricing scheme on the base of Voice et al.’s pricing mechanism [6].

It is proved that in the situation where user load and renewable energy generation

profile keep constant and each energy storage device is operated optimally in terms of

income maximization, value of the convex objective function defined by grid operator

is non-increasing from day to day and aggregate demand profile is convergent to the

optimal profile which minimizes the convex objective function value under our pricing

scheme. When both user load and renewable energy generation are changing, we tailor

the previous pricing scheme and have proved that value of the convex objective function

is always reduced or kept the same when new aggregate demand profile is reached by

the changes of storage profile made according to the revised pricing scheme compared

with the situation where no changes of storage profile are made, if perfect predictions

of total user load and renewable energy generation together with optimal operation of

storage devices are assumed. Profitability of optimal energy storage operation can also

be guaranteed by an extension of our pricing scheme which does not affect energy storage

devices’ decision on storage profile.



Chapter 5

Simulation Results

In this chapter, we present some simulation results and evaluate the performance of our

pricing scheme in different situations. In our simulations, we use the hourly demand data

of Ontario, Canada from the IESO Public Reports [22] for user load profile. Average

hourly demand is approximately 15400 MWH. Also, we use hourly output data of the

9 wind generators in Ontario for renewable power generation profile. Most of these

wind generators have rated hourly output below 150MWH. And we assume that each of

these generators is equipped with energy storage device whose charging and discharging

volume is 400% rated power of the generator and has 4-hour charge/discharge time. We

make this assumption to show the performance of our pricing scheme at higher levels

of energy storage penetration. In reality economically viable charging and discharging

volume as well as capacity of energy storage device connected with renewable energy

source at current stage are much less than the sizes in our assumption. Each energy

storage device has charge efficiency a = 0.95 and discharge efficiency b = 0.95. At

the beginning of each day (also the end of each day), state of charge of each energy

storage device is 50%. The objective function (daily energy generation cost) is defined

as
∑H

h=1C
h(lh) =

∑H
h=1(0.003lh

2
+ 10lh + 100000).

5.1 Simulation Results for Constant User Load Profile and

Renewable Energy Generation

Simulation results of the objective function value and aggregate demand profile for the

situation where user load and renewable power generation keep constant from day to

day are shown in Fig. 5.1 and Fig. 5.2. Hourly demand data of Ontario on Sept. 1, 2009

are used as the constant user load profile and hourly output of the 9 wind generators

on Sept. 1, 2009, the constant renewable power generation profile. On the first day

26
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Figure 5.1: Evolution of objective function value (energy generation cost) in the
situation where user load and renewable power generation are all constant.

Figure 5.2: Evolution of aggregate demand profile in the situation where both user
load and renewable power generation are constant.
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Figure 5.3: Comparison of aggregate demand profile without energy storage to opti-
mal aggregate demand profile with energy storage.

shm = 0 ∀m ∈ M ∀h ∈ H. Fig. 5.3 compares the aggregate demand profile without

energy storage to optimal aggregate demand profile with energy storage that is solved in

a centralized manner. As is shown in Fig.5.1, objective function value is non-increasing

under our pricing scheme. From Fig. 5.2 and Fig. 5.3, it can be observed that under our

pricing scheme, aggregate demand profile converges to the optimal profile. The majority

of decrease in the objective function value is made on the first day.

5.2 Simulation Results for Changing User Load Profile and

Renewable Energy Generation

For the situation where both user load and renewable power generation are changing,

simulation results are shown in Fig. 5.4, Fig. 5.5, and Fig. 5.6. We use hourly demand

data of Ontario and hourly output of the 9 wind generators in Sept. 2009 for our sim-

ulation. Predicted user load profile and renewable power generation profile are exactly

user demand profile and generator output profile in the next day. On Aug. 31, 2009,

shm = 0 ∀m ∈M ∀h ∈ H. It can be observed from Fig. 5.4 that the value of the objec-

tive function is reduced every day either compared with the situation where no energy

storage is used or if previous day storage profile is kept. And by comparing Fig. 5.5 and

Fig. 5.6, we can see that the aggregate demand profile is efficiently flattened. Ideally,

as shown in Fig. 5.7, with ideal charge and discharge efficiency, sufficient charging and
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Figure 5.4: Evolution of cost saving: blue line shows cost difference between no energy
storage participation and with energy storage participation under our pricing scheme;
red line shows cost saved by energy storage changes made to previous day storage profile

under our pricing scheme.

Figure 5.5: Evolution of aggregate demand profile without energy storage in the
situation where both user load and renewable power generation are changing.

discharging volume as well as energy storage capacity, fully flattened aggregate demand

profile can be achieved every day.
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Figure 5.6: Evolution of aggregate demand profile with energy storage in the situation
where both user load and renewable power generation are changing.

Figure 5.7: Evolution of aggregate demand profile with ideal efficiency, sufficient
charging and discharging volume as well as energy storage capacity.
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Figure 5.8: Evolution of aggregate demand profile when standard deviation of the
normal distribution εp yields to equals 0.4.

5.3 Simulation Results after Introduction of Prediction

Errors

However, prediction error is inevitable in reality. As is shown in Fig. 5.5, the shape of

daily aggregate demand profile without energy storage is similar from day to day, but

the magnitude varies significantly. Therefore what grip operator needs to predict every

day is mainly the magnitude of daily aggregate demand profile without energy storage.

We now introduce errors into the prediction, which yield to normal distribution. If error

εp is incurred, the true aggregate demand profile without energy storage in the coming

day will be (1 + εp)(X́
h −

∑
m∈M v́hm) where X́h and v́hm are perfect predictions for the

next day on total user load profile and renewable energy generation respectively. εp

yields to normal distribution whose mean is 0.

Evolution of aggregate demand profile and cost saving in the situations where standard

deviation of the normal distribution εp yields to equals 0.1, 0.2 and 0.4 is shown in

Fig. 5.8, Fig. 5.9, Fig. 5.10, Fig. 5.11, Fig. 5.12 and Fig. 5.13. After prediction errors are

introduced, profitability of our pricing scheme can not be guaranteed when prediction

errors are too large which is rare but possible (Fig.5.9). But in general, our pricing

scheme still reduces the value of objective function efficiently and the more accurate the

predictions are, the better the objectives are met.
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Figure 5.9: Evolution of cost saving when standard deviation of the normal distribu-
tion εp yields to equals 0.4: blue line shows cost difference between no energy storage
participation and with energy storage participation under our pricing scheme; red line
shows cost saved by energy storage changes made to previous day storage profile under

our pricing scheme.

Figure 5.10: Evolution of aggregate demand profile when standard deviation of the
normal distribution εp yields to equals 0.2.
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Figure 5.11: Evolution of cost saving when standard deviation of the normal distri-
bution εp yields to equals 0.2: blue line shows cost difference between no energy storage
participation and with energy storage participation under our pricing scheme; red line
shows cost saved by energy storage changes made to previous day storage profile under

our pricing scheme.

Figure 5.12: Evolution of aggregate demand profile when standard deviation of the
normal distribution εp yields to equals 0.1.
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Figure 5.13: Evolution of cost saving when standard deviation of the normal distri-
bution εp yields to equals 0.1: blue line shows cost difference between no energy storage
participation and with energy storage participation under our pricing scheme; red line
shows cost saved by energy storage changes made to previous day storage profile under

our pricing scheme.

5.4 Summary

As is shown by the simulation results, when user load profile and renewable energy gen-

eration are constant, value of the convex objective function defined by grid operator

is non-increasing under our pricing scheme and aggregate demand profile in the grid

converges to the optimal profile. The majority of decrease in the objective function

value occurs on the first day. In the situation where user load profile and renewable

energy generation are changing, profitability of our pricing scheme is guaranteed if per-

fect prediction is assumed. Even when prediction errors are introduced, in general our

pricing scheme still reduces objective function value efficiently and the more accurate

the predictions are, the better the objectives of grid operator are met.



Chapter 6

Conclusion

In this project, a new universal pricing scheme was proposed to indirectly control energy

storage devices in smart grid. It was designed to efficiently reduce the value of any

convex objective function defined by grid operators. We proved that in the situation

where user load and renewable energy generation profile keep constant and each energy

storage device is operated optimally in terms of income maximization, aggregate demand

profile is convergent to the optimal profile which minimizes the convex objective function

value under our pricing scheme. When both user load and renewable energy generation

are changing from day to day, our pricing scheme can still efficiently reduce the value

of the objective function. Profitability of optimal energy storage operation can also

be guaranteed. Simulation results assuming high level of energy storage penetration

were provided to demonstrate the stability and profitability of our pricing scheme. Our

pricing scheme can be applied to control the behavior of energy storage devices installed

for integration of intermittent renewable energy at current stage and is believed to have

much broader applications in future.
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Appendix A

Pseudocodes for System

Operation

Algorithm 2 : Executed by grid operator.

At the end of each day Do
Predict total user load profile.
repeat

Collect renewable energy generation predictions.
until receive predictions from all renewable energy sources.
Set price based on the objective function, predictions of total user load profile and

renewable energy generation as well as current total storage profile.
Send updated pricing scheme for the next day to all energy storage devices in the

grid.
End

Algorithm 3 : Executed by each energy storage device in the grid.

At the end of each day Do
if there are renewable energy sources connected then

Make prediction on renewable energy generation profile in the coming day and
send it to grid operator.

End if
At receiving pricing scheme for the next day Do

Optimize energy storage profile in the coming day according to the received
pricing scheme so that income is maximized.

End
End
Charge and discharge itself according to the scheduled energy storage profile in the
coming day.
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