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1 Turbulence modeling

We will be assume constant density and viscosity of fluid. We also assume that no thermal inter-
action of the fluid with the solid boundary. In this way only continuity and momentum equations
describe fluid velocity(u,v,w) and pressurep distribution (Navier -Stokes equation):

∂v
∂ t

+v ·∇v = −
1
ρ

∇p+ ν∆v momentum equation (1)

∇ ·v =
∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 continuity equation–conservation of mass (2)

Equations (1),(2) are subjected to no–slip boundary condition at the walls and knows inlet and exit
conditions.
Both laminar and turbulent flows satisfy (1),(2). For laminar flow, where there are no random
fluctuations, we can sometimes solve them for a variety of geometries, like flow in pipe (see lec-
ture n5–viscous–flow).Most flows encountered in engineering practice are turbulent. This is
particularly true for pipe flows, so it is essential at this time to introduce a few very fundamental
notions that will lead us to a better physical understandingof the friction factors, and hence the
pressure losses, in such flows. It is useful to begin by recalling the difference in the nature of ve-
locity profiles between laminar and turbulent flow in duct. This is depicted in Fig.1. The parabolic
profile of part (a) corresponds to a fully-developed Poiseuille flow for which it can be seen that
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Figure 1: Comparison of laminar and turbulent velocity profiles in duct; a) laminar, b) turbulent

the velocity gradient at the wall, and hence also the wall shear stress,τw, is not so large as in the
turbulent case of part (b) representing the (time) mean flow for fully-developed turbulence. The
region very close to the wall exhibits a nearly linear velocity profile in the turbulent case, and
is completely dominated by viscous effects. This inner layer is termed as theviscous sublayer;
velocity varies linearly with distance from the wall. The so-called ”outer region” or called also
asinertial sublayer, shows nearly constant velocity with distance from the wall. But we recognize
that this outer layer velocity cannot satisfy the no–slip condition at the wall, and at the same time
the inner (linear) profile whichdoessatisfy no slip condition (u = 0) will not correctly asymptote
to the outer solution. This suggests that a third solution,” overlap layer” ,is needed to match these
two results.
The thickness of the viscous sublayer is very small (typically, much less than 1 percent of the pipe
diameter), but this thin layer next to the wall plays a dominant role on characteristics because of
large velocity gradients it involves.

For turbulent flow, because of the fluctuations, every velocity and pressure term in (1),(2) is a
rapidly varying random function of time and space.

Figure 2: Graphical depiction of components of Reynolds decomposition
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At present our mathematics cannot handle such instantaneous fluctuating variables. No single
pair of random functionsu(x,y,z, t) and p(x,y,z, t) is known to be a solution to (1),(2). As engi-
neers we are interested more in the average, mean values of velocity, pressure, shear stress,etc..
This approach led Osborne Reynolds in 1895 to the decomposition, now known as the Reynolds
decomposition

u(x,y,z, t) = u+u′(x,y,z, t), v(x,y,z, t) = v+v′, w(x,y,z, t) = w+w′, p(x,y,z, t) = p+ p′

(3)
In equation (3) the bar (””) denotes a time average,and prime (”′ ”) indicates fluctuation about
the time–averaged, mean quantity. Formally, time average is defined by

u = lim
T→∞

1
T

∫ T

0
udt (4)

The fluctuationu′ is defined as the deviation of u from its average valueu′ = u− u and by
definition a fluctuation has zero mean value.

u′ = lim
T→∞

1
T

∫ T

0
(u−u)dt = u−u = 0 (5)

For a time average to make sense, the integrals (4) and (??) have to be independent form initial
time t = 0. It means that the mean flow has to be statistically steady:

∂u
∂ t

= 0. (6)

The mean square of a fluctuation is not zerou′2 > 0 and is a measure of theintensity of the
turbulence:

u′2 = lim
T→∞

1
T

∫ T

0
u′2dt 6= 0 (7)

Also in general the mean fluctuation products such asu′v′, u′p′ is not equal zero in a typical
turbulent flow. Substitute (3) into Navier –Stokes equations (1),(2), and take the time mean of
each equation. The continuity relation reduces to

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (8)

which is no different from a laminar continuity relation (2). We can aslso show easily that

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0. (9)

So (8) and (9) tell us that the mean and fluctuating parts of velocity field each satisfy the continuity
condition.
More interesting is what happens to the equation for the momentum (1). Let us write the the first
u–component of this equation:

∂u
∂ t

+u
∂u
∂x

+v
∂u
∂y

+w
∂u
∂z

= −
1
ρ

∂ p
∂x

+ ν
(

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂z2

)

(10)
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The left side of equation (10) (material derivative=du/dt), using the continuity equation∇ ·u = 0,
one may rewrite as

du
dt

=
∂u
∂ t

+u
∂u
∂x

+v
∂u
∂y

+w
∂u
∂z

=
∂u
∂ t

+
∂uu
∂x

+
∂uv
∂y

+
∂uw
∂z

(11)

Inserting to the equation (10), (11)u = u+ u′,v = v+ v′,w = w+ w′, after time averaging, will
contain mean values plus three mean products, or correlations, of fluctuating velocities. The most
important of these is the momentum relation in the mainstream, or x, direction, which takes the
form

u
∂u
∂x

+v
∂u
∂y

+w
∂u
∂z

= −
∂ p
∂x

+
∂
∂x

(

µ
∂u
∂x

−ρu′2
)

+
∂
∂y

(

µ
∂u
∂y

−ρu′v′
)

+
∂
∂z

(

µ
∂u
∂z

−ρu′w′

)

(12)
The three correlation terms−ρu′2,−ρu′v′, −ρu′w′ are calledturbulent stresses,τ turb because

they have the same dimensions and occur right alongside the newtonian (laminar) stress terms
τ lam = µ ∂u

∂x , etc. Actually, they are convective acceleration terms (which is why the density ap-
pears), not stresses, but they have the mathematical effectof stress and are so termed almost
universally in the literature.The turbulent stresses are unknown a prioriand must be related by
experiment to geometry and flow conditions. The problem, howrelate the−ρu′2,−ρu′v′, −ρu′w′

to the the mean velocitiesu,v,w has occupied a lot of people for a long time now.

Figure 3: Typical velocity distributions in turbulent flow near wall

In pipe and boundary-layer flow, the stressρu′v′ associated with direction y normal to the wall
is dominant, and we can approximate with excellent accuracya simpler streamwise momentum
equation

u
∂u
∂x

+v
∂u
∂y

+w
∂u
∂z

= −
∂ p
∂x

+
∂τ
∂y

(13)

where

τ = µ
∂u
∂y

−ρu′v′ = τ lam+ τturb (14)

In the outer layerτturb is two or three orders of magnitude greater thanτ lam, and vice versa in
the wall layer. These experimental facts enable us to use a crude but very effective model for the
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velocity distributionu(y) across a turbulent wall layer.

2 Velocity profiles: the inner, outer, and overlap layers

We have seen in Fig. 3 that there are three regions in turbulent flow near a wall:

1. Wall layer: Viscous shear dominates.

2. Outer layer: Turbulent shear dominates.

3. Overlap layer: Both types of shear are important.

Let τw be the wall shear stress, and letδ andU represent the thickness and velocity at the edge of
the outer layer,y = δ . For the wall layer, Prandtl deduced in 1930 thatu must be independent of
the shear–layer thickness

u = f (µ ,τw,ρ,y) (15)

By dimensional analysis, this is equivalent to

u = φ

(

y
ν

(

τw

ρ

)1/2
)

(

τw

ρ

)1/2

(16)

whereφ is non-dimensional function.

The quantity
(

τw
ρ

)1/2
= u∗ is termed thefriction velocity because it has dimension m/s, although

it is not actually a flow velocity. Equation(16) can be rewrite in dimensionless form:

u+ =
u
u∗

= φ (
yu∗

ν
) (17)

Equation (17) is called thelaw of the wall, and it is found to satisfactorily correlate with experi-
mental data for smooth surface for 0≤ yu∗/ν ≤ 5. Therefor, the thickness of the viscous sublayer
is roughly

y = δ sublayer=
5ν
u∗

(18)

The viscous sublayer gets thinner as the mean velocity increases. Consequently, the velocity
profile becomes nearly flat and that the velocity distribution becomes more uniform at very high
Reynolds number (very low viscosity).

From experiment it is known that functionφ
(

yu∗

ν

)

= yu∗

ν . From this fact follows the linear viscous

relation

u+ =
u
u∗

=
yu∗
ν

= y+ (19)

The quantity ν
u∗ has dimension of length and is called theviscous length; it is used to nondimen-

sionalize the distancey from the surface.
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Von Karman in 1933 deduced thatu in the outer layer is independent of molecular viscosity, but its
deviation from the stream velocityU must depend on the layer thicknessδ and the other properties

(Umax−u)outer = g(δ ,τw,ρ ,y) (20)

Again, by dimensional analysis we rewrite this as

Umax−u
u∗

= Φ(
y
δ

) (21)

whereu∗ is friction velocity. The deviation of velocity from the centerline valueUmax−u is called
thevelocity defector retardation of the flow due to wall effects. Equation (21) is called thevelocity-
defect lawfor the outer layer.
Both the wall law 19) and the defect law 21) are found to be accurate for a wide variety of experi-
mental turbulent duct and boundary-layer flows.
They are different in form, yet they must overlap smoothly inthe intermediate layer. In 1937 C.
B. Millikan showed that this can be true only if the overlap-layer velocity varies logarithmically
with y:

u
u∗

=
1
κ

ln
yu∗
ν

+B, or u+ =
1
κ

lny+ +B (22)

Over the full range of turbulent smooth wall flows, the dimensionless constantsκ and B are found
to have the approximate valuesκ = 0.41 andB = 5.0. Equation 22) is called thelogarithmic-
overlap layer. The results are summarize in figure 4.

Figure 4: Experimental verification of the inner-, outer-, and overlap- layer laws relating velocity
profiles in turbulent wall flow.
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2.1 Turbulent-Flow Solution

Assume that (22) correlates the local mean velocity u(r) across the pipe. Settingy= R− r we have

u(r)
u∗

=
1
κ

ln
(R− r)u∗

ν
+B (23)

Compute the average velocityV from this profile

V =
q

πR2 =
1

πR2

∫ R

0
u∗
[

1
κ

ln
(R− r)u∗

ν
+B

]

2πrdr

=
1
2

u∗
(

2
k

ln
Ru∗

ν
+2B−

3
k

) (24)

The process of integration the above integral, eq. (24) is rather laborious. If you are not patient
enough the easiest way to calculate the above integral ( eq. (24) is the usage of computer program
for algebraic, symbolic manipulation like ”MATHEMATICA”.Introducingk = 0.41. andB= 5.0
we obtain, numerically,

V
u∗

≈ 2.44ln
Ru∗

ν
+1.34 (25)

What it is here exciting that we can directly related formula(25) to the Darcy friction factorf .
Let us recalled that in lecture ”n5–viscous–flow” we relatedthe pressure drop to the shear stress
as follow:

∆p
l

=
2τ
r

(26)

We concluded that the shear stress had to be a linear functionof ther–variableτ = Cr and the
constantC can be express by the wall shareC = 2τw/D. So

τ =
2τwr

D
(27)

and

∆p =
4lτw

D
(28)

The Darcy -Weisbach law says:

hL =
∆p
ρg

= f
L
D

v2

2g
(29)

and from this we have

f =
∆p

1
2ρV2

D
L

(30)

By substituting the pressure drop expressed by the wall shear (28) we obtain an alternate expres-
sion for the friction factor as a dimensional wall shear stress

f =
8τw

ρV2 or f = 8

(

u∗

V

)2

and τw =
1
4

f
ρV2

2
(31)
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Now, the left side of the equation (25) can be express as

V
u∗

=

(

V2

τw
ρ

)1/2

=

(

8
f

)1/2

(32)

The argument of the logarithm in (25) may by express equivalently

Ru∗

ν
=

1
2D Vu∗

νV
=

1
2

Re

(

f
8

)1/2

(33)

Introducing (33) into Eq. (25), changing to a base–10 logarithm, and rearranging, we obtain

1

f 1/2
≈ 1.99 log(Re f1/2)−1.02 (34)

Summarizing, by simply computing the mean velocity from thelogarithmic–low correlation, we
obtain a relation between the friction and Reynolds number for turbulent pipe flow. Prandtl derived
Eq. (34)in 1995 and adjusted the constants slightly to fit friction data better

1

f 1/2
= 2.0 log(Re f1/2)−0.8 (35)

Equation (35) is cumbersome to solve ifReis known andf is wanted. As we already have known
there are many aproximations in the literature from whichf can be computed explixity formRe,
for example well–known Blasius formula

f = (100Re)−1/4 (36)

The maximum velocity in turbulent pipe flow is given by (23), evaluated at r=0

Umax

u∗
=

1
κ

ln
(R)u∗

ν
+B (37)

Subtracting equation (37) form (25)one obtain

V −Umax

u∗
= 3.66 (38)

Using (32) we obtain the formula relating mean velocity to maximum velocity

Umax≈V(1+1.33
√

f ) (39)

2.2 Power-law velocity profile

Numerous other empirical velocity profiles exist for turbulent pipe flow. Among those, the sim-
plest and the best known is thepower-law velocityprofile express as

u
Umax

=
( y

R

)1/n
, or

u
Umax

=
(

1−
r
R

)1/n
(40)
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Figure 5: Exponent,n, for power-law velocity profiles.

where the exponent n is a constant whose value depends on the Reynolds number. The value
n increases with increasing Reynolds number. The valuen = 7 generally approximates many
flows in practice, giving rise to the termone-seventh power-law velocity profile. Typical turbulent
velocity profiles based on power–law representation are shown in Fig. (6)

Note from (6) that the turbulent profiles are much ”flatter than the laminar profile and that this
flatness increses with Reynolds number.

Example 1. Water at200C (ρ = 998 kg/m3, and ν = 1 ·10−6 m2/s flows through a horizontal
pipe of D= 0.1 m diameter with a flowrate of q= 4 · 10−2 m3/s and a pressure gradient of
∆p
l = 2.59kPa/m.

1. Determine the approximate thickness of the viscous sublayer.

2. Determine the approximate Darcy friction coefficient f

3. Determine the approximate centerline velocity, Umaxby two methods: one using the power–
law velocity profile theory and the second using overlap-layer velocity profile theory (eq.
(40))

4. Determine the ratio of the turbulent to laminar shear stress,τturb/τ lam at a point midway
between the centerline and the pipe wall (i.e., at r= 0.025m)

SOLUTION.
(1) According to Eq. (18), the thickness of the viscous sublayer, is approximately

δ s = 5
ν
u∗

where u∗ =

(

τw

ρ

)1/2

The wall shear stress can be obtained from the pressure drop data ∆p
l = 2.59·103 Pa (see equation

(28)):

τw =
D
4

(

∆p
l

)

= 64.8 N/m2

Hence, u∗ =
(

τw
ρ

)1/2
= 0.255m/s.

The centerline velocity can be obtained from the average velocity and and the formula (39) or the
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Figure 6: Typical laminar flow and turbulent flow velocity profiles.

assumption of a power–law velocity profile as follows. For this flow V = q/A = 5.09 m/s The
Reynolds number is

Re=
VD
ν

= 5.07·105.

Thus, from Fig. (5) n= 8.4, so that

u
Umax

=
(

1−
r
R

)
1

8.4

(2) The friction coefficient can be evaluate from the formula Eq.(31)

f =
8τw

ρV2 =
8·64.8

998.0·5.042 = 0.02 (41)

(3) To determine the central velocity Umax, we must know the relationship between V and Umax.
This can be obtained by integration of the power-law velocity profile (or using the formula (39),
please compare the results yourself)

q = AV =
∫

udA= Umax

∫ R

0

(

1−
r
R

)1/n
= 2πR2Umax

n2

(n+1)(2n+1)

Since q= πR2V we obtain
V

Umax
=

2n2

(n+1)(2n+1)
(42)
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With n= 8.4 in the prsent case, this gives Umax= 6.04 m/s.
(4) From Eq. (27) the shear stress at r= 0.025m is

τ =
2τwr

D
=

2(64.6·0.025)
0.1

= 32.4
N
m2 (43)

Shear stress is the sum ofτ = τ lam + τturb. The laminar shear stressτ lam = −µ du/dr and
turbulent share stressτ turb = −ρu′v′. From the power -law velocity profile (40) we obtain the
gradient of the average velocity as

du
dr

=
−Umax

nR

(

1−
r
R

)(1−n)/n
= −

6.04
8.4·0.05

(

1−
0.025

(
0.05)

)(1−8.4)/8.4

= −26.5 1/s

Thus

τ lam = −µ
du
dr

= −(νρ)
du
dr

= −(1.0·10−6) ·998· (−26.5) = 0.0266N/m2

The ratio of turbulent to laminar shear stress is given by

tturb

τ lam
=

τ − τ lam

τ lam
=

32.4−0.026
0.026

= 1220

As expected, most of the shear stress at this location in the turbulent flow is due to the turbulent
shear stress.

Figure 7: Shear stresses of turbulent flow in pipe. The shear stressτ in pipe is a linear function of
the distance from the central lineτ = Cr. In a very narrow region near wall (the viscous sublayer)
the laminar shear stress is dominant. The scale of on the figure is not correct. Typically the value
of τturb is 100 to 1000 times greater thanτ lam in the outer region.

Example 2. Water flows at Re= 2.3×104 through a horizontal smooth pipe with V= 0.807m/s.
Compareu for y+ = 5,100 and 500 from a) the logarithmic law andb) the power law to the
measure data, that is the solid line in Fig. (4),ρ = 998kg/m3, ν = 1·10−6 m2/s.
Solution.
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a)The log law u+ = 2.44lny+ + 5 for 40≤ y+ ≤ 600, has to augmented for y+ = 5, which is
located in a laminar sublayer for which u+ = y+. Again, u+ = u/u∗ and y+ = yu∗/ν , where
y = R− r. First we find u∗ = (τw/ρ)1/2 where

τw = ρV2 f/8 with f = (100Re)−1/4 gives u∗ = 0.0457m/s

andu at three location can be calculated.
b) The power law for pipe flow can be written as u= Umax(y/R)1/n where n≈ 6.6 for Re=
2.3×104. Now from V= 1/πR2∫ R

0 u 2πrdr the centerline velocity Umax can be derived as

Umax=
(n+1)(2n+1)

2n2 V = 1.0 m/s
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Data comparison for turbulent velocity profiles

y+ (y/R)∗100% Log law Power law Measurements
– % u m/s u m/s m/s
5 0.8 0.229 0.478 0.229

100 15.3 0.741 0.752 0.754
500 76.4 0.921 0.960 0.983

3 Turbulence: some important thoughts

”Most flows occurring in nature and in engineering applications are turbulent. The boundary layer
in the earth’s atmosphere is turbulent (except possibly in very stable conditions); jet streams in the
upper troposphere are turbulent; cumulus clouds are in turbulent motion. The water currents below
the surface of the oceans are turbulent; the Gulf Stream is a turbulent wall-jet kind of flow. The
photosphere of the sun and the photospheres of similar starsare in turbulent motion; interstellar
gas clouds (gaseous nebulae) are turbulent; the wake of the earth in the solar wind is presumably
a turbulent wake. Boundary layers growing on aircraft wingsare turbulent. Most combustion
processes involve turbulence and even depend on it; the flow of natural gas and oil in pipelines
is turbulent. Chemical engineers use turbulence to mix and homogenize fluid mixtures and to
accelerate chemical reaction rates in liquids or gases. Theflow of water in rivers and canals is
turbulent; the wakes of ships, cars, submarines and aircraft are in turbulent motion. The study of
turbulence is clearly an interdisciplinary activity, which has a very wide range of applications. In
fluid dynamics laminar flow is the exception, not the rule: onemust have small dimensions and
high viscosities to encounter laminar flow.”
We have discussed turbulence without offering any actual definition for it, because the turbulence
is resistant to precise defnition. Instead, we have mentioned the following properties.

• High Reynolds number. Turbulence occurs at high Reynolds number. Remember that we
said that instability of laminar flow was one way that flows become turbulent; instability of
a particular flow requires that the Reynolds number exceed come minimum value. The high
Reynolds number also means that at the large scales of the flow, inertial forces dominate
over viscous forces.

• Randomness and disorder.Turbulent flows exhibit a high degree of randomness and dis-
order, particularly at small scales. We describe these random fluctuations by decomposing
the flow variables into mean and fluctuating parts, e.g.ui = ui +u′i.

• Disparity in length scales. A wide range of length scales are relevant in turbulent flows.
The spread between the largest and smallest length scales ina flow increases with increasing
Reynolds number. This makes computation extremely difficult.

• Energy cascade. In a turbulent flow, energy generally gets transferred fromthe large scales
to the small scales in an inviscid fashion, then gets dissipated at the small scales by the action
of viscosity. The presence of dissipation in turbulent flowsis significant; even though the
large flow scales may be essentially inviscid, there is viscous dissipation of kinetic energy
going on in the flow, at the small scales.

13



• Increased transport of momentum, scalars etc.The random fluctuations of turbulent
flows provide another mechanism by which quantities can get transferred from one portion
of a flow to another. In a laminar flow, transport of momentum mostly occurs through vis-
cosity (diffusion), while in a turbulent flow, transport canoccur through the random motion
embodied by the fluctuating terms. Think of a parallel flow, with all the (mean) velocity
vectors pointing in the same direction (say, the x-direction). In the laminar case, momen-
tum only gets transferred between layers by viscous drag. Inthe turbulent case, however,
there can be velocity fluctuations in the y-direction to carry momentum across the mean
streamlines.

Figure 8: The scalar concentration of a turbulent water jet.

Figure 9: A turbulent boundary layer on a sphere
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4 Problems

1. Air at 20oC, (ν = 1.51· 10−5 m2/s), ρ = 1.205 kg/m3, flow through a 14-cm-diameter tube under
fully developed conditions. The centerline velocity isUmax= 5 m/s. Estimate a) the friction velocityu∗
assuming the logarithmic law (Eq. (??) - use the iteration) b) the wall stressτw, c) the average velocity V
using the formula (25).
2. By analogy with laminar shear,τ = µdu/dy, T.V. Boussinesq in 1877 postulated that turbulent shear
could also be related to mean-velocity gradientτturb = εdu/dy, whereε is called the eddy viscosity and is
much larger than molecular viscosityµ . If the logarithmic–overlap law, Eq. (??) is valid with τ ≈ τw show
thatε ≈ kρu∗y.
3. Water (ρ = 998, ν = 1 ·10−6 m2/s) flows in a 9–cm–diameter pipe under fully developed conditions.
The centerline velocityUmax= 10 m/s. Compute a) q, b) V (mean velocity), c)τw and d)∆p for a 100–m
pipe length.
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