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1 Turbulence modeling

We will be assume constant density and viscosity of fluid. We assume that no thermal inter-
action of the fluid with the solid boundary. In this way onlyntiouity and momentum equations
describe fluid velocityu,v,w) and pressur@ distribution (Navier -Stokes equation):

v .
% +v-0Ov= —% Op+ vAv momentum equation ()
O-v= @ + a_v + a—W =0 continuity equation—conservation of mass 2
0x dy 0z ¥ &q

Equations (1),(2) are subjected to no—slip boundary cmmdét the walls and knows inlet and exit
conditions.

Both laminar and turbulent flows satisfy (1),(2). For larmiflaw, where there are no random
fluctuations, we can sometimes solve them for a variety ofrgeoes, like flow in pipe (see lec-
ture n5—viscous—flow)Most flows encountered in engineering practice are turbuleh This is
particularly true for pipe flows, so it is essential at thiadito introduce a few very fundamental
notions that will lead us to a better physical understandinthe friction factors, and hence the
pressure losses, in such flows. It is useful to begin by riegathe difference in the nature of ve-
locity profiles between laminar and turbulent flow in ductisTis depicted in Fig.1. The parabolic
profile of part (a) corresponds to a fully-developed Poisediow for which it can be seen that
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Figure 1: Comparison of laminar and turbulent velocity pesfin duct; a) laminar, b) turbulent

the velocity gradient at the wall, and hence also the walhsB&essy,,, is not so large as in the
turbulent case of part (b) representing the (time) mean fawidlly-developed turbulence. The
region very close to the wall exhibits a nearly linear veipgrofile in the turbulent case, and
is completely dominated by viscous effects. This innerlagdermed as theiscous sublayer
velocity varies linearly with distance from the wall. Thecalled”outer region” or called also
asinertial sublayer shows nearly constant velocity with distance from the wBillt we recognize
that this outer layer velocity cannot satisfy the no—slipdition at the wall, and at the same time
the inner (linear) profile whickoessatisfy no slip conditiony = 0) will not correctly asymptote
to the outer solution. This suggests that a third solutioverlap layet ,is needed to match these
two results.

The thickness of the viscous sublayer is very small (tybicaduch less than 1 percent of the pipe
diameter), but this thin layer next to the wall plays a dominale on characteristics because of
large velocity gradients it involves.

For turbulent flow, because of the fluctuations, every véjaand pressure term in (1),(2) is a
rapidly varying random function of time and space.
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Figure 2: Graphical depiction of components of Reynolddgmosition



At present our mathematics cannot handle such instantarfemiuating variables. No single
pair of random functionsi(x,y,zt) and p(x,y,zt) is known to be a solution to (1),(2). As engi-
neers we are interested more in the average, mean valueooityepressure, shear stress,etc..
This approach led Osborne Reynolds in 1895 to the deconmuuositow known as the Reynolds
decomposition

u(x,y,zt) =0+u(xy,zt), v(xyzt)=v+V, wxyzt)=w+w, pxyzt)=p+p

3)
In equation (3) the bar (") denotes a time average,and prim€ () indicates fluctuation about
the time—averaged, mean quantity. Formally, time averagefined by

T

U= lim L udt 4)
T—o 0

The fluctuationu’ is defined as the deviation of u from its average valtie- u— U and by
definition a fluctuation has zero mean value.

/= 1m = [ (u-T)dt=0-U=0 ®)

For a time average to make sense, the integrals (4) 2Pch@ve to be independent form initial
timet = 0. It means that the mean flow has to be statistically steady:
Ju
— =0. 6
ot (6)
The mean square of a fluctuation is not zefd> 0 and is a measure of thatensity of the
turbulence

- 1 T
u2=lim = [ u?dt£0 7
ms # (7)

Also in general the mean fluctuation products suchv/as u'p’ is not equal zero in a typical

turbulent flow. Substitute (3) into Navier —Stokes equati¢h),(2), and take the time mean of

each equation. The continuity relation reduces to
ou, 0v  ow _
ox oy 0z

which is no different from a laminar continuity relation (2)/e can aslso show easily that

(8)

oo oV 0w
ox o9y o0dz
So (8) and (9) tell us that the mean and fluctuating parts ofoityl field each satisfy the continuity
condition.
More interesting is what happens to the equation for the nmbunme (1). Let us write the the first
u—component of this equation:
du du du du 1dp V(dzu d%u 02u>

E‘FU&—FVa—y—FWE——EW W+0—)/2+ﬁ

9)

(10)
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The left side of equation (10) (material derivative#dt), using the continuity equatidi-u =0,
one may rewrite as

du Jdu Ju Ju du Jdu Jduu Jduv Jduw
— = — 4+ U—+V—FW— =

gt ot Y TVay ez T e tax ey T oz (11)

Inserting to the equation (10), (1l)=u+u,v=v+V.,w =W+ W, after time averaging, will
contain mean values plus three mean products, or cornesatad fluctuating velocities. The most
important of these is the momentum relation in the mainstrea X, direction, which takes the
form

U@Jrv@Jrv—v@——@Jri N _ o +i oU_ v +i 9w
ox dy 0z  Ox OX Hox P oy ”ay p az\Maz 7P
(12)

The three correlation termspu2,—puVv, —puw are callecturbulent stresses,, because
they have the same dimensions and occur right alongsideetivéonian (laminar) stress terms
Tlam = u%, etc. Actually, they are convective acceleration termsi¢iviis why the density ap-
pears), not stresses, but they have the mathematical effesttess and are so termed almost
universally in the literatureThe turbulent stresses are unknown a prioriand must be related by
experiment to geometry and flow conditions. The problem, telate the—pu?2,—pu'v/, —pu'w’
to the the mean velocities v,w has occupied a lot of people for a long time now.

v
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Figure 3: Typical velocity distributions in turbulent flovear wall

In pipe and boundary-layer flow, the strgmgv’ associated with direction y normal to the wall
is dominant, and we can approximate with excellent accusasynpler streamwise momentum
equation

_Ju _oJu _ou op ot
U—+V—4+W— = ——

ox ' dy 9z  OX + ay (13)

where )
U
T= I«la—y — PUV = Tjam+ Tturb (14)

In the outer layerryp is two or three orders of magnitude greater thag,, and vice versa in
the wall layer. These experimental facts enable us to usede dut very effective model for the
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velocity distributionti(y) across a turbulent wall layer.

2 \Velocity profiles: the inner, outer, and overlap layers

We have seen in Fig. 3 that there are three regions in turbfltem near a wall:
1. Wall layer: Viscous shear dominates.
2. Outer layer: Turbulent shear dominates.
3. Overlap layer: Both types of shear are important.

Let 1y, be the wall shear stress, and deindU represent the thickness and velocity at the edge of
the outer layery = d. For the wall layer, Prandtl deduced in 1930 taahust be independent of
the shear—layer thickness

U= f(u7TW>p>y) (15)
By dimensional analysis, this is equivalent to

1/2 1/2
_ Y [ Tw Tw
“‘"’(V (%) ) (%) 4o

whereg is non-dimensional function.
. 1/2 . - . . . :
The quanuty(%) = U* is termed thdriction velocity because it has dimension m/s, although

it is not actually a flow velocity. Equation(16) can be rewiiih dimensionless form:
yu*
v

8]
ut = T o(—) (17)
Equation (17) is called thiaw of the wall and it is found to satisfactorily correlate with experi-
mental data for smooth surface forOyu*/v < 5. Therefor, the thickness of the viscous sublayer

is roughly

5v
y= 5sublayer: U_ (18)

*

The viscous sublayer gets thinner as the mean velocity asee Consequently, the velocity
profile becomes nearly flat and that the velocity distributieecomes more uniform at very high
Reynolds number (very low viscosity).

From experiment it is known that functiqpm(g) = Y From this fact follows the linear viscous
relation

Uy
u TRy =y (29)

The quantity;= has dimension of length and is called thiscous lengthit is used to nondimen-
sionalize the distancgfrom the surface.



Von Karman in 1933 deduced thain the outer layer is independent of molecular viscosity,itsu
deviation from the stream velocity must depend on the layer thicknesand the other properties

(Umax— 0)outer = 9(0, Tw, P, Y) (20)

Again, by dimensional analysis we rewrite this as

Umax—TU y
ST (D(S) (21)
whereu* is friction velocity. The deviation of velocity from the cemline valueJnax— U is called
thevelocity defecbr retardation of the flow due to wall effects. Equation (Z19alled thevelocity-
defect lawfor the outer layer.
Both the wall law 19) and the defect law 21) are found to be &atelfor a wide variety of experi-
mental turbulent duct and boundary-layer flows.
They are different in form, yet they must overlap smoothlyha intermediate layer. In 1937 C.
B. Millikan showed that this can be true only if the overlayér velocity varies logarithmically
with y:
U_ L™ 8 o wr=lmytis 22)
U KoV K
Over the full range of turbulent smooth wall flows, the dimenkess constants and B are found
to have the approximate valugs= 0.41 andB = 5.0. Equation 22) is called thiegarithmic-
overlap layer The results are summarize in figure 4.
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Figure 4: Experimental verification of the inner-, outendaverlap- layer laws relating velocity
profiles in turbulent wall flow.



2.1 Turbulent-Flow Solution

Assume that (22) correlates the local mean velocity u(Qsthe pipe. Setting= R—r we have

ur) 1 n(R—r)u*

B 23
u* K v * (23)

Compute the average velockyfrom this profile

R _ k
V:i ! / u* [%Inw+8} 2mrdr
0

R TiR?
Y (24)
—}u* 2 In@JrZB—§
2 k v k

The process of integration the above integral, eq. (24)tierdaborious. If you are not patient
enough the easiest way to calculate the above integral @djjig the usage of computer program
for algebraic, symbolic manipulation like "MATHEMATICA"Introducingk = 0.41. andB =5.0

we obtain, numerically,

Vv RU
~~ 2.44|nT +1.34 (25)

u*
What it is here exciting that we can directly related form(28) to the Darcy friction factof.
Let us recalled that in lecture "n5—-viscous—flow” we relatieel pressure drop to the shear stress

as follow:
Bp _ 21

[ r

We concluded that the shear stress had to be a linear furaftibve r—variablet = Cr and the
constanC can be express by the wall sh&e- 21,,/D. So

(26)

2Tl
— 27
r="3 (27)
and 4
Ap=—5~ (28)
The Darcy -Weisbach law says:
Ap L v
h = =—f — — 29
L= 5g b 29 (29)
and from this we have Ab D
p
f=c—"T-— (30)
spV2L

By substituting the pressure drop expressed by the walr$B8awe obtain an alternate expres-
sion for the friction factor as a dimensional wall shearssre

81y A 2 1 _pv?
f_ﬁ or f_8<v> and TW_ZfT (31)




Now, the left side of the equation (25) can be express as

Vv V2 8
(%) -0 >

The argument of the logarithm in (25) may by express equitile

5 (33)

ipvu 1/2
Ry _3oVu 1. (f
v AV 2

Introducing (33) into Eg. (25), changing to a base—10 ldlgarj and rearranging, we obtain
1
<177 ~ 199 logRe f/2) —1.02 (34)

Summarizing, by simply computing the mean velocity from ldgarithmic—low correlation, we

obtain a relation between the friction and Reynolds numdetuirbulent pipe flow. Prandtl derived
Eq. (34)in 1995 and adjusted the constants slightly to fitibh data better

le/z — 20 log(Re 2) 0.8 (35)

Equation (35) is cumbersome to solveRiéis known andf is wanted. As we already have known
there are many aproximations in the literature from whiiatean be computed explixity forrRe
for example well-known Blasius formula

f = (100Re Y4 (36)

The maximum velocity in turbulent pipe flow is given by (23)akiated at r=0

(Ru*

U 1
max _ <10
u* K

+B (37)

Subtracting equation (37) form (25)one obtain

V_TL*W — 366 (38)

Using (32) we obtain the formula relating mean velocity toxmaum velocity

Umax~V (1+1.33/f) (39)

2.2 Power-law velocity profile

Numerous other empirical velocity profiles exist for tudmi pipe flow. Among those, the sim-
plest and the best known is thewer-law velocityprofile express as

o= (@) o G (R)” “0)
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Figure 5: Exponent,n, for power-law velocity profiles.

where the exponent n is a constant whose value depends orethmI&s number. The value
n increases with increasing Reynolds number. The valae7 generally approximates many
flows in practice, giving rise to the terome-seventh power-law velocity profilBypical turbulent
velocity profiles based on power—law representation are/shio Fig. (6)

Note from (6) that the turbulent profiles are much "flattemttize laminar profile and that this
flatness increses with Reynolds number.

Example 1. Water at20°C (o = 998kg/m?®, andv = 1-10-° m?/s flows through a horizontal
pipe of D= 0.1 m diameter with a flowrate of & 4-10~2 m®/s and a pressure gradient of
£P = 2.5%kPg/m.

1. Determine the approximate thickness of the viscous gebla
2. Determine the approximate Darcy friction coefficient f

3. Determine the approximate centerline velocitygkby two methods: one using the power—
law velocity profile theory and the second using overlaptayelocity profile theory (eq.

(40))

4. Determine the ratio of the turbulent to laminar shear st/ Tiam at a point midway
between the centerline and the pipe wall (i.e., at ©.025m)

SOLUTION.
(1) According to Eg. (18), the thickness of the viscous suhlésapproximately

1/2
65251 where U= <M>
u* o

The wall shear stress can be obtained from the pressure dmpéé =2.59.10° Pa (see equation

(28)):
Tw= % <¥> = 648N/’

1/2
Hence, ti = (%W) =0.255m/s.

The centerline velocity can be obtained from the averagecitgland and the formula (39) or the
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Figure 6: Typical laminar flow and turbulent flow velocity fites.

assumption of a power—law velocity profile as follows. Fas tfow V = q/A =5.09 m/s The
Reynolds number is

Re= \g =5.07-10°.

Thus, from Fig. (5) n= 8.4, so that

U (1_1)8*1“
UmaX R

(2) The friction coefficient can be evaluate from the formula €4)

8Ty 8-64.38
= = =0.02 41
pVZ2  9980-5.04? (41)

(3) To determine the central velocityld, we must know the relationship between V apd,U
This can be obtained by integration of the power-law vejopibfile (or using the formula (39),
please compare the results yourself)

R r\/n n?
— AV = [udA=U 1—— = 2mMRU e
g / ; max /0 (2-%) "X 1) (2n+ 1)

Since g= niR?V we obtain
\% 2n?
= 42
Umax (N+1)(2n+1) (42)
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With n= 8.4 in the prsent case, this giveskk= 6.04m/s.
(4) From Eq. (27) the shear stress at+0.025m is

 2tur  2(646-0025 __ N
T=gr =T =324 (43)

Shear stress is the sum of= Tiam + Tturb- The laminar shear stress,m = —uy du/dr and
turbulent share stress,;, = —pu'Vv. From the power -law velocity profile (40) we obtain the
gradient of the average velocity as

d0  —Umax ry(@-n/m 6.04 0.025 (1-8.4)/8.4 B
dr~  nR (1_ ﬁ) ~84.0.05 (1_ TO'OS)> =—2651/s
Thus
Tlam = —H% = —(vp)% = —(1.0-107%).998. (—26.5) = 0.0266N/m?

The ratio of turbulent to laminar shear stress is given by

= 1220

As expected, most of the shear stress at this location iruttellent flow is due to the turbulent
shear stress.

Pipe wall

oo/

Figure 7: Shear stresses of turbulent flow in pipe. The shezsss in pipe is a linear function of
the distance from the central lire= Cr. In a very narrow region near wall (the viscous sublayer)
the laminar shear stress is dominant. The scale of on theefigumot correct. Typically the value
of Tiurp is 100 to 1000 times greater thanm in the outer region.
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Example 2. Water flows at Re- 2.3 x 10* through a horizontal smooth pipe with¥ 0.807m/s.
Comparet for y© = 5,100 and 500 from a) the logarithmic law andb) the power law to the
measure data, that is the solid line in Fig. (4)= 998kg/m®, v =1-107° n?/s.

Solution.
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a)The log law U = 2.44Iny" + 5 for 40 < y" < 600, has to augmented forty= 5, which is
located in a laminar sublayer for whichtu=y*. Again, U = U/u* and y" = yu*/v, where
y = R—r. First we find u = (1,,/p)Y? where

Tw=pV2f/8 with f=(100Re Y4 gives  =0.0457m/s

andu at three location can be calculated.
b) The power law for pipe flow can be written as=UUmax(y/R)Y" where n~ 6.6 for Re=
2.3x 10*. Now from V= 1/nR2fORU 2rrdr the centerline velocity [dax can be derived as

n+1)(2n+1
Umax= —( ;Eﬂ ) V=10m/s
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Data comparison for turbulent velocity profiles

y* | (y/R)*100% | Log law | Power law| Measurement
- % um/s um/s m/s T
5 0.8 0.229 0.478 0.229

100 153 0.741 0.752 0.754

500 76.4 0.921 0.960 0.983

3 Turbulence: some important thoughts

"Most flows occurring in nature and in engineering applicas are turbulent. The boundary layer
in the earth’s atmosphere is turbulent (except possiblyeiy gtable conditions); jet streams in the
upper troposphere are turbulent; cumulus clouds are intembmotion. The water currents below
the surface of the oceans are turbulent; the Gulf Streamusbalent wall-jet kind of flow. The
photosphere of the sun and the photospheres of similaratans turbulent motion; interstellar
gas clouds (gaseous nebulae) are turbulent; the wake oéttieie the solar wind is presumably
a turbulent wake. Boundary layers growing on aircraft wiags turbulent. Most combustion
processes involve turbulence and even depend on it; the flmataral gas and oil in pipelines
is turbulent. Chemical engineers use turbulence to mix awddgenize fluid mixtures and to
accelerate chemical reaction rates in liquids or gases. flbheof water in rivers and canals is
turbulent; the wakes of ships, cars, submarines and dirmr@fin turbulent motion. The study of
turbulence is clearly an interdisciplinary activity, whibas a very wide range of applications. In
fluid dynamics laminar flow is the exception, not the rule: omast have small dimensions and
high viscosities to encounter laminar flow.”

We have discussed turbulence without offering any actuaitien for it, because the turbulence
is resistant to precise defnition. Instead, we have meatidghe following properties.

» High Reynolds number. Turbulence occurs at high Reynolds number. Remember that w
said that instability of laminar flow was one way that flowsdree turbulent; instability of
a particular flow requires that the Reynolds number exceateaninimum value. The high
Reynolds number also means that at the large scales of theifiesial forces dominate
over viscous forces.

» Randomness and disorder.Turbulent flows exhibit a high degree of randomness and dis-
order, particularly at small scales. We describe theseoranitLictuations by decomposing
the flow variables into mean and fluctuating parts, &.6- Ui + u;.

 Disparity in length scales A wide range of length scales are relevant in turbulent flows
The spread between the largest and smallest length scad®mincreases with increasing
Reynolds number. This makes computation extremely difficul

» Energy cascadeIn a turbulent flow, energy generally gets transferred ftbenlarge scales
to the small scales in an inviscid fashion, then gets dissipat the small scales by the action
of viscosity. The presence of dissipation in turbulent flésvsignificant; even though the
large flow scales may be essentially inviscid, there is wisadissipation of kinetic energy
going on in the flow, at the small scales.
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* Increased transport of momentum, scalars etc. The random fluctuations of turbulent
flows provide another mechanism by which quantities canrgasferred from one portion
of a flow to another. In a laminar flow, transport of momentunstiyooccurs through vis-
cosity (diffusion), while in a turbulent flow, transport caocur through the random motion
embodied by the fluctuating terms. Think of a parallel flowthvall the (mean) velocity
vectors pointing in the same direction (say, the x-diregtidn the laminar case, momen-
tum only gets transferred between layers by viscous draghdnurbulent case, however,

there can be velocity fluctuations in the y-direction to garromentum across the mean
streamlines.

Figure 8: The scalar concentration of a turbulent water jet.

Figure 9: A turbulent boundary layer on a sphere
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4 Problems

1. Air at 20°C, (v = 1.51-10°° n?/s), p = 1.205kg/m?, flow through a 14-cm-diameter tube under
fully developed conditions. The centerline velocityugax= 5 m/s. Estimate a) the friction velocity
assuming the logarithmic law (Eq?7?) - use the iteration) b) the wall stresg, c) the average velocity V
using the formula (25).

2. By analogy with laminar shear, = udu/dy, T.V. Boussinesq in 1877 postulated that turbulent shear
could also be related to mean-velocity gradiegf, = €dt/dy, wheree is called the eddy viscosity and is
much larger than molecular viscosity If the logarithmic—overlap law, Eq?() is valid with T =~ 1,, show
thate ~ kpu*y.

3. Water o =998 v = 1-107% n?/s) flows in a 9—cm—diameter pipe under fully developed cooditi
The centerline velocitymax= 10m/s. Compute a) q, b) V (mean velocity), &) and d)Ap for a 100-m
pipe length.
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