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Problem 1: 

1. Collect a dataset: simulate the wingrock dynamics system using wingrock_main with different 

initial conditions and for 5 seconds runtime in each condition. 

Four initial conditions are tested: 

#1 (1.2;1), #2 (3;6), #3 (2;0), #4 (0;4) 

2. Write code to learn the weights of the wingrock model for 𝑝̇ assuming they are unknown. Use 

the basis from the parameterized model provided. Compare learned weights with the original 

weights. 

𝜙̇ = p 

ṗ = 0.8 + 0.2314ϕ + 0.6918p − 0.6245|ϕ|p + 0.0095|p|p + 0.0214ϕ3 

Answer: 

In the matrix form,  

ṗ = [1, ϕ, p, |ϕ|p, |p|p, ϕ3] ∙ [β1, β2, β3, β4, β5, β6]
T 

Let B = [β1, β2, β3, β4, β5, β6]
T, which is the parameter vector we are trying to solve. 

Put all the data collected in the five seconds together: 

PDOT = [
1, ϕ1, p1, |ϕ1|p1, |p1|p1, ϕ1

3

⋮
1, ϕn, pn, |ϕn|pn, |pn|pn, ϕn

3
] ∙ [β1, β2, β3, β4, β5, β6]

T 

where PDOT = [ṗ1, … , ṗn]
T  

Using linear regression to solve for B: 

 Data under 
initial conditions 

#1 

Data under initial 
conditions #1,2 

Data under initial 
conditions #1,2,3 

Data under initial 
conditions 
#1,2,3,4 

Original 
weights 

β1 1.1632 0.6730 0.6983 0.7771 0.8 

β2 0.3227 0.2888 0.2849 0.2610 0.2314 

β3 0.6098 0.6742 0.6821 0.7147 0.6918 

β4 -0.7709 -0.6616 -0.6646 -0.6666 -0.6245 

β5 -0.0703 0.0099 0.0099 0.0100 0.0095 

β6 0.0277 0.0226 0.0227 0.0227 0.0214 



Using the data collected with four initial conditions, the parameter vector obtained by linear 

regression is close to the original weight vector. 

3. GP regression: Now we will learn a data driven GP model with RBF bases using Csato’s 

online GP algorithm. Run the regression: use the onlineGP class to learn a GP representation of 

wingrock dynamics using the data collected in 1. The output (dependent variables) of the GP 

should be the second state derivative. The input to the GP (the independent variables) should 

be the control input and the entire state vector. 

The code and results are attached. 

4. Validate: create a different dataset on which learning was not performed, and compare the 

predictions of your learned model with that dataset. Compare in terms of the following metrics: 

a. Mean squared error between your predictions and the true values 

b. What is the mean squared error for the initial conditions you had in the training data set, what 

is it for those that were far from those in the training data set (be careful, the wing rock system 

can be unstable for some initial conditions) 

GP parameters: 

bandwidth = 30; noise = 1; tol = 0.00001; max_points = 30 

Figure 1 shows the comparison of GP predicted ṗ and the actual ṗ for 60 s for initial condition 

(1.2;1), which is one of the initial conditions used to train the model. The MSE is 4.2. It can be 

observed that the predicted ṗ follows closely the trend of actual ṗ. 

Figure 2 displays the comparison of GP predicted ṗ and the actual ṗ for 60 s for initial condition 

(6;3). This is not one of the four initial conditions for model training. The MSE is 5.5. At the 

beginning due to the fact that the initial state is not within the range of training datasets, the 

model prediction significantly deviates from the actual value.  

  



 

Figure 1. Comparison of Pdot prediction by GP regression with actual Pdot value for initial 

condition (1.2;1) which is one of the four initial conditions used to train the GP model. 

 

Figure 2. Comparison of Pdot prediction by GP regression with actual Pdot value for initial 

condition (6;3) which is not one of the four initial conditions used to train the GP model. 

 

  



Problem 2: Clustering with K-means 

The file gauss_mix_data.mat contains data from 5 Gaussian distributions. Your goal is to 

implement the K-means algorithm to identify the 5 clusters. The file 

EM_Gaussian_mixture_model_setup.m shows how you can extract data from the 

gauss_mix_data.mat file and plots it in different clusters.  

How long does your algorithm take to run? 

Does it work every time? Do at least 20 runs of your algorithm and report a histogram of 

showing the number of times your algorithm found the right clusters. 

Answer: 

K-means clustering with initial prior mean X=[1.833885015, 0.86217332, -1.307688296, 

0.342624467, 2.76943703], Y=[0.53766714, -2.258846861, 0.31876524, -0.433592022, 

3.57839694] after 5, 10, 15, 20, 30, 100 iterations is shown as follows: 

 

(a)                                                                (b) 

 

(c)                                                                   (d) 



 

(e)                                                                    (f) 

Figure 3. K-means clustering after (a) 5 iterations (b) 10 iterations (c) 15 iterations (d) 20 

iterations (e) 30 iterations (f) 100 iterations. 

It can be observed that the clustering converged after around 15 iterations. Right clusters have 

been found by the algorithm. 

The algorithm found the right clusters every time. The algorithm was tested 30 times and it all 
found the right clusters when the prior means are initialized by 
prior_mean=randn(2,5); 
Even when the prior means are initialized by 
prior_mean=randn(2,5)*1000; 
the algorithm was tested 20 times and it always found the right clusters. 
 

  



Problem 3: Neural Networks  

Using the dataset from Problem 1 we will create a single hidden layer neural network for 

wingrock dynamics. Choose the number of hidden layers to be 10, use the sigmoidal activation 

function. Perform the following: 

1. Write a script to program the neural network. Initialize the weight randomly 

2. Implement backpropagation algorithm 

3. Train on the same data set you are using for training in problem 1 and validate the output of 

the model using the same dataset you are using for validation on problem 1 

4. Compare the performance of GP and SHN NN. How does changing the number of hidden 

layers affect the performance (reducing and increasing with increments of 2 from 4 to 16)?  

5. Does the convergence depend on initial weights for the default case of 10 hidden layers? 

Answer: 

The shallow neural network initially has 10 hidden neurons. 

After implementing the backpropagation algorithm to train the neural network (10000 iterations, 

learning rate = 0.2), the MSE (mean squared error) of the neural network prediction has been 

reduced to 3.95, as shown in Figure 4. A few spikes of MSE were observed during the iterations. 

They might be due to the fact that the learning rate is relatively large. 

 

Figure 4. MSE of a single hidden layer neural network for wingrock dynamics. 

The comparison of the predicted 𝑝̇ with the actual 𝑝̇ from the four initial conditions in the first 5 

seconds is shown in Figure 5. The predicted value is following the trend of the actual value 



closely. The same network has been also implemented with TensorFlow with same learning rate 

(0.2) and iteration number (10000). Similar results have been obtained, as shown in Figure 6. 

The MSE after 10000 iterations was 4.17. The gradient descent optimizer in my algorithm is 

better since its computation of gradient is accurate while in TensorFlow the gradient is 

estimated. MSE of SHLNN is close to that of GP model. 

 

Figure 5. Comparison of Pdot prediction by SHLNN with the actual Pdot value for the four initial 

conditions used to train the model. 

 



 

Figure 6. Pdot prediction by SHLNN (using TensorFlow) for the four initial conditions used to 

train the model. 

MSE of network with 4,6,8,10,12,14,16 hidden neurons with learning rate of 0.2 and 1000 

iterations: 

Number of 
hidden neurons 

4 6 8 10 12 14 16 

MSE 4.04 4.08 4.07 3.98 3.99 3.99 3.99 

 

MSE stopped reducing after the hidden neuron number reached 10. Generally speaking, the 

more hidden neurons there are, the smaller MSE can be achieved. However, larger number of 

hidden neurons may also result in over-fitting. 

In Figure 7 after removing the noise, the actual 𝑝̇ from initial condition (1.2;1) is again compared 

with the predicted 𝑝̇ for the whole 60 s. It can be observed that for most of the time, the 

predicted value agrees well with the actual one. However, between 35 s and 50 s, the two have 

large disagreement. This is probably because the features of the inputs in that period are not 

well represented by the dataset from four initial conditions in 5 s.   

Similarly in Figure 8, the actual 𝑝̇ after removing the noise from initial condition (6;3) is 

compared with the predicted 𝑝̇ for the whole 60 s. Big deviation is observed at the beginning 

due to the fact that the initial state is not within the range of training datasets. 



 

Figure 7. Comparison of SHLNN predicted Pdot with the actual value for initial conditions (1.2;1) 

(in the dataset used to train the network) for 60 s. 

 

Figure 8. Comparison of SHLNN predicted Pdot with the actual value for initial conditions (6;3) 

(not in the dataset used to train the network) for 60 s. 

The initial weights do not seem to affect the convergence of SHLNN in the current case.  

 

  



Bonus:  

Use Tensor Flow or your favorite DNN package to classify MNIST dataset as described here: 

https://www.tensorflow.org/tutorials/deep_cnn  

A convolutional neural network has been implemented to classify MNIST dataset. After 2000 

iterations with 50 samples in each batch of data, the training accuracy is 0.976. 

https://www.tensorflow.org/tutorials/deep_cnn

