
CHAPTER 6  
IDEAL DIATOMIC GAS 
 
Monatomic gas: 

• Has translational and electronic degrees of freedom 
• Nuclear partition function can be treated as a constant factor 

 
Diatomic gas: 

• Has vibrational and rotational degrees of freedom as well.  
• Electronic energy state is similar to that of monatomic gas. 
• Nuclear partition function may be combined with the rotational one. 

 

1 PRELIMINARY THOUGHTS  
 

* How to generalize to diatomic molecules * 
 

• The general procedure would be to set up the Schrodinger equation for 2 nuclei and n-
electrons, and solve it for the set of eigenvalues of the diatomic molecule. This is again too 
hard. 

 
• We will thus need a good approximation that allows all degrees of freedom to be written 

separately, like 
 

trans rot vib elec nuclH H H H H H= + + + +    (6-14) 
 

which implies that 
 

trans rot vib elec nuclε ε ε ε ε ε= + + + +   and 
 

trans rot vib elec nuclq q q q q q=     (6-14’) 

 
Within that approximation, the partition function of the gas itself will be given by 

 

  
( )trans rot vib elec nucl

( , , )
!

N
q q q q q

Q N V T
N

=     (6-17) 

 
• But we do not know yet whether (6-14’) is possible or not.  At least we can write 

 
trans intq q q= where includes (rot, vib, elec, nucl) degrees of freedom. intq

and we hopefully get a good approximation for . intq
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* What to do? * 
 

• THE VIBRATIONAL AND ROTATIONAL MOTION: The rigid rotor-harmonic 
oscillator approximation allows the Hamiltonian of the relative motion of the nuclei to be 
written as 

 
rot,vib rot vibH H H= +  which implies 

 
rot,vib rot vibε ε= + ε  and   rot,vib rot vibq q q=       

 
• THE TRANSLATIONAL MOTION:  

1m m m→ + 2  so that 
3/2

1 2
trans 2

2 ( )m m kT
h

π⎡ + ⎤= ⎢ ⎥q V
⎢ ⎥⎣ ⎦  

 
 

• THE ELECTRONIC PARTITION FUNCTION will be similar to that for a monatomic gas, 
except the definition of the ground state. 

 
• THE NUCLER PARTITION FUNCTION may not be separable from because of 

the symmetry requirement. 
nuclq rotq

 

2 THE VIBRATIONAL DEGREE OF FREEDOM 
 

2-1 The Born-Oppenheimer approximation 
 
The nuclei are much more massive than the electrons, and thus move slowly relative to the 
electrons. Therefore the electrons can be considered to move in a field produced by the nuclei fixed 
at some internuclear separation.  
 
The Schrodlnger equation approximately separates into two simpler equations for: (i) motion of the 
electrons in the field of the fixed nuclei, and (ii) the motion of the nuclei in the electronic potential 

, that is, the potential set up by the electrons in the electronic state j. Each electronic state of 
the molecule creates its own characteristic internuclear potential. The calculation of  for even 
the ground state is a difficult n-electron calculation, and so semiempirical approximations such as 
the Morse potential are often used. See Figure 6-1. 

( )ju r
( )ju r
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The relative motion of the two nuclei in the potential  consists of rotary motion about the 
center of mass and relative vibratory motion of the two nuclei. It turns out that the amplitude of the 
vibratory motion is very small, and so it is a good approximation to consider the angular motion to 
be that of a rigid dumbbell of fixed internuclear distance . In addition, the internuclear potential 

can be expanded about : 

( )ju r

er
( )ju r er

 

( ) 2
2

2

2

1( ) ( ) ( ) ( )
2

1( ) ( )
2

e e

e e e
r r r r

e e

du d uu r u r r r r r
dr dr

u r k r r

= =

⎛ ⎞⎟⎜= + − + − +⎟⎜ ⎟⎟⎜⎝ ⎠

= + − +

"

"

 (6-3) 

 
The parameter k is a measure of the curvature of the potential at the minimum and is called the 
force constant. A large value of k implies a stiff bond; a small value implies a loose bond. 
 
The energy and degeneracy of an harmonic oscillator are [cf Eq. (1-31)] 
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( )vib
1

1 0,
2 nh n nε ν ω= + = = …1,2,    (6-8) 

 
where 
 

1/21where
2
kν

π µ
⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠   1 2

1 2

m m
m m

µ =
+

  (6-9) 

 
For a molecule to change its vibrational state by absorbing radiation it must (1) change its dipole 
moment when vibrating and (2) obey the selection rule 1n∆ = ± . The frequency of absorption is, 
then, seen to be 
 

1/2
1 1

2
n n k
h

ε εν
π µ

+ ⎛ ⎞− ⎟⎜= = ⎟⎜ ⎟⎜⎝ ⎠  (6-13) 

 
Equation (6-13) predicts that the vibrational spectrum of a diatomic molecule will consist of just 
one line. This line occurs in the infrared, typically around 1000 cm-1, giving force constants k of the 
order of 105 or 106 dynes/cm. (See Problem 6-5.) Table 6-1 gives the force constants of a number 
of diatomic molecules. 
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2-2 The Vibrational Partition Function 
 
Since we are measuring the vibrational energy levels relative to the bottom of the internuclear 
potential well, we have  
 

1 0,1,2,
2n n h nε ν⎛ ⎞= + =⎜ ⎟

⎝ ⎠
…     (6-19)  

 
The vibrational partition function  then, becomes vibq
 

/ 2 / 2
vib

0

1( )
1

n h h n h
h

n n
q T e e e e

e
βε β ν β ν β ν

β ν

∞
− − − −

−
=

= = =
−∑ ∑  (6-20) 

 
where we have recognized the summation above as a geometric series. This is one of the rare cases 
in which q can be summed directly without having to approximate it by an integral, as we did in the 
translational case in Chapter 5 and shall do shortly in the rotational case. The quantity hβ ν  is 
ordinarily larger than 1, but if the temperature is high enough, 1hβ ν � , and we can replace the 
sum in  (6-20) by an integral to get 
 

( )/ 2
vib

0

( ) h h n kTq T e e dn kT h
h

β ν β ν ν
ν

∞
− −= =∫ �    (6-21) 

 
Although we can calculate  exactly, it is worthwhile to compare this approximation to some 
others which we shall derive later on. 

vib ( )q T

 

2-3 Contribution to the Thermodynamic Energy 
 

2
/

ln
2 1v

v v v
v T

d qE NkT Nk
dT eΘ

Θ Θ⎛= = +⎜ −⎝ ⎠
⎞
⎟    (6-22) 

 
where /v h kνΘ ≡ and is called the vibrational temperature. Table 6-1 gives   for a number of 
diatomic molecules. The vibrational contribution to the heat capacity is 

vΘ

 

( )
2 /

2/ 1

v

v

T
v v

T
N

E eNk
T T e

Θ

Θ

∂ Θ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠ −
      (6-23) 

 
Notice that as , a result given in many physical chemistry 
courses and one whose significance we shall understand more fully when we discuss equipartition 
of energy. 

, andvT E NkT C→ ∞ → →v Nk
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2-4 The Level Population 
The fraction of molecules in excited vibrational states designated by n is 
 

( 1/ 2)

vib

h n

n
ef

q

β ν− +

=       (6-24) 

 
This equation is shown in Fig. 6-4 for Br2 at 300 K. Notice that most molecules are in the ground 
vibrational state and that the population of the higher vibrational states decreases exponentially. 
Bromine has a force constant smaller than most molecules, however (cf Table 6-1), and so the 
population of excited vibrational levels of Br2 is greater than most other molecules. Table 6-2 gives 
the fraction of molecules in all excited states for a number of molecules. This fraction is given by 
 

( 1/ 2)
/

0 0
1 vib

1
h n

h
n

n

ef f e
q

β ν
β ν

− +∞
− −Θ

>
=

= = − = =∑ Te     (6-25) 

 

 

 

 6



3 THE ELECTRONIC PARTITION FUNCTION 
 
The electronic partition function will be similar to that of monatomic case. But we must choose a 
zero of energy for the rotational and vibrational states. The zero of rotational energy will usually be 
taken to be the  state. In the vibrational case we have two choices. One is to take the zero of 
vibrational energy to be that of the ground state, and the other is to take the zero to be the bottom of 
the internuclear potential well. In the first case, the energy of the ground vibrational state is zero, 
and in the second case it is 

0J =

/ 2hν . We shall choose the zero of vibrational energy to be the bottom 
of the internuclear potential well of the lowest electronic state. Lastly, we take the zero of the 
electronic energy to be the separated, electronically unexcited atoms at rest. If we denote the depth 
of the ground electronic state potential well by , the energy of the ground electronic state is 

, and the electronic partition function is 
eD

eD−
 

2/ /
elec 1 2

eD kT kT
e eq e e εω ω −= + "+   (6-18) 

 
where  and eD 2ε  are shown in Fig. 6-2. We also define 0 / 2eD D hν= − . As Fig. 6-2 shows, Do is 
the energy difference between the lowest vibrational state and the dissociated molecule. The 
quantity  can be measured spectroscopically (by pre-dissociation spectra, for example) or 
calorimetrically from the heat of reaction at any one temperature and the heat capacities from 0 K 
to that temperature. See Table 6-1 for  . 

0D

0D

 
 

 7



4 THE ROTATIONAL DEGREE OF FREEDOM  
 
The energy eigenvalues of a rigid rotor is given in (1-32) 
 

2 ( 1)
0,1,2,

2J
J J

J
I

ε += =
…=       (6-7) 

 
the degeneracy of a rigid rotor 
 

2 1 0,1,2,J J Jω = + = …  
 
the moment of inertia of the molecule.  
 

2
eI rµ=  

 
Transitions from one rotational level to another can be induced by electromagnetic radiation. The 
selection rules for this are:  
 

(1) The molecule must have a permanent dipole moment,  
(2) The frequency of radiation absorbed in the process of going from a level J to J + 1 is given 
by 

 
1

2 ( 1) 0,1,2,
4

J J h J J
h I

ε εν
π

+ −= = + = …    (6-10) 

 
We thus expect absorption of radiation at frequencies given by multiples of 2/ 4h Iπ  and should 
observe a set of equally spaced spectral lines, which for typical molecular values of µ  and  will 
be found in the microwave region. Experimentally one does see a series of almost equally spaced 
lines in the microwave spectra of linear molecules. The usual units of frequency in this region are 
wave numbers, or reciprocal wavelengths. 

2
er

 
1 1(cm )

c
νω

λ
− = =        (6-11) 

 
Microwave spectroscopists define the rotational constant  2   by  / 8B h Iπ c  (units of cm-1), so that 
the energy of rigid rotor (in cm-1) becomes 
 

( 1J BJ Jε = + )        (6-12) 
 
Table 6-1 1ists the values of B  for several diatomic molecules.  
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4-1 Heteronuclear Diatomic Molecules 
 
For heteronuclear diatomic molecules, the calculation of the rotational partition function is 
straightforward. The rotational partition function is given by 
 

( ) ( )1
rot

0
( ) 2 1J BJ J

J
J J

q T e J e ββεω
∞

− +−

=

= = +∑ ∑     (6-26) 

 
(Note: this is a summation over levels rather than over states.) 
 

r
B
k

Θ ≡  , the characteristic temperature of rotation. (Table 6-1) 

 
Unlike the vibrational case, this sum cannot be written in closed form.  
 

APPROXIMATIONS TO THE PARTITION FUNCTION 
 
At high enough temperatures, (  is quite small at ordinary temperatures for most molecule) /r TΘ
 

( ) ( ) [ ]1 1
rot

0 0

2

( ) (2 1) ( 1)

8

r rJ J J J

r

r

Tq T J e dJ e d J J

IkT T
h

π

∞ ∞
−Θ + −Θ += + = + =

Θ

= Θ

∫ ∫

�
 (6-27,28,29)  

 
This is called the high-temperature limit. (It is really ( )/ 2 1 /rkT J Tε∆ = Θ + that must be small 
compared to one, and this of course cannot be true as J increases. However, by the time J is large 
enough to contradict this, the terms are so small that it makes no difference.) 
 
 
For low temperatures or for molecules with large values of ,  rΘ

e.g.,  HD with , one can use the sum directly. For example, 42.7 KrΘ = D

 
2 / 6 / 12 /

rot ( ) 1 3 5 7r r rT T Tq T e e e− Θ − Θ − Θ= + + + +"     (6-30) 
 
is sufficient to give the sum to within 0.1 percent for 0.7r TΘ > .  
 
For intermediate temperatures i.e., , but not small enough for the integral to give a good 
approximation, we need some intermediate approximation. The replacement of a sum by an integral 
can be viewed as the first of a sequence of approximations. The full scheme is a standard result of 
the field of the calculus of finite differences and is called the Euler-MacLaurin summation formula. 
It states that if 

0.7r TΘ <

( )f n  is a function defined on the integers and continuous in between, then 
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( ) ( )
(2 1) (2 1)

1

( ) ( )( ) ( ) ( ) ( )
2 2 !

jbb
j j j

n a ja

Bf b f af n f n dn f a f b
j

∞
− −

= =

+ ⎡ ⎤= + + − −⎣ ⎦∑ ∑∫  (6-31) 

 
where ( ) ( )kf a is the kth derivative of f evaluated at a.  

The 'sjB are the Bernoulli numbers, 1 2 3
1 1 1, , ,
6 30 42

B B B= = = "  

 Before applying this to , let us apply it first to a case we can do exactly. Consider the sum 
[cf. Eq. (6-20)] 

rot ( )q T

 
3

0

1 1 1
1 2 12 720

j

j

e
e

α
α

α α
α

∞
−

−
=

= = + + − +
−∑ "     (6-33) 

 
Since 
 

3

2 3
1 1 1 1

1 2 12 720
2 6

e α

α α
α α αα

− = = + + −
− − + −

"
"

+    (6-34) 

 
We see that these two expansions are the same. If α  is large, we can use the first few terms of (6-
33); otherwise, we use the Euler-MacLaurin expansion in α . 
 
Applying this formula to  gives (see Problem 6-9): rot ( )q T
 

2 3

rot
1 1 4( ) 1
3 15 315

r r r

r

Tq T
T T T

⎡ ⎤Θ Θ Θ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟Θ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
"   (6-35) 

 
which is good to within one percent for r TΘ < . For simplicity we shall use only the high-
temperature limit in what we do here since r TΘ �  for most molecules at room temperature (cf. 
Table 6-1). 
 

THERMODYNAMICS ASSOCIATED WITH ROTATION 
 
The rotational contribution to the thermodynamic energy is 
 

( )2 2rot
rot

lnln TqE NkT NkT NkT
T T

⎛ ⎞∂ +⎡ ⎤∂⎛ ⎞ ⎣ ⎦= ≈ ≈⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

"
"+   (6-36) 

 
and the contribution to the heat capacity is 
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,rotVC Nk= +"         (6-37) 
 
The fraction of molecules in the J-th rotational state  
 

( 1) /

rot

(2 1)
( )

r J J T
JN J e

N q T

−Θ ++
=       (6-38) 

 
Figure 6-5 shows this fraction for HCl at 300oK. Contrary to the vibrational case, most molecules 
are in excited rotational levels at ordinary temperatures. We can find the maximum of this curve by 
differentiating (6-38) with respect to J to get 
 

1/ 21/ 2 1/ 2

max
1
2 22 2 r

kT kT TJ
B B

⎛ ⎞⎛ ⎞ ⎛ ⎞= − ≈ = ⎜ ⎟⎜ ⎟ ⎜ ⎟ Θ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
We see then that  increases with T and is inversely related to maxJ B , and so increases with the 

moment of inertia of the molecule since 1B
I

∝ . 

 
 

4-2 The Symmetry Requirement for a Homonuclear Diatomic Molecule 
 

• For homonuclear diatomic molecules, the calculation of the rotational partition function is 
not quite so straightforward.  
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• The total wave function of the molecule, that is, the electronic, vibrational, rotational, 
translational, and nuclear wave function, must be either symmetric or antisymmetric under 
the interchange of the two identical nuclei.  

 
• It must be symmetric if the nuclei have integral spins (bosons), or anti symmetric if they 

have half-integral spins (fermions).  
 

• This symmetry requirement has profound consequences on the thermodynamic properties of 
homo nuclear diatomic molecules at low temperatures. We shall discuss the interchange of 
the two identical nuclei of a homonuclear diatomic molecule in this section, and then apply 
the results to the calculation of in the next. rotq

 
An exchange of the nuclei =  

(1) an inversion of all the particles, electrons and nuclei, through the origin, & 
(2) an inversion of just the electrons back through the origin.  

 
Let us write totalψ  exclusive of the nuclear part as 
 

total trans rot vib elec'ψ ψ ψ ψ ψ=     (the prime indicates the nuclear contribution being ignored) 
 

• transψ  depends only upon the coordinates of the center of mass of the molecule, and so this 
factor is not affected by inversion.  

• vibψ  depends only upon the magnitude of er r− , and so this part of the total wave function 
is unaffected by any inversion operation.  

• elecψ  under the inversions in both Steps (1) and (2) above depends upon the symmetry of the 
ground electronic state of the molecule. The ground electronic state of most molecules 
(designated by 

g

+∑ term symbol) is symmetric under both of these operations.  

• rotψ  therefore controls the symmetry of totalψ . 
9 Only Step (1) affects rotψ .  
9 The effect of this inversion is to change ( ), ,r θ φ  to ( ), ,r π θ φ π− +  that describe 

the orientation of the diatomic molecule.  
9 One can see this either analytically from the eigenfunctions themselves or pictorially 

from the rotational wave functions shown in Fig. 6-6. (Notice that the rigid rotor 
wave functions are the same functions as the angular functions of the hydrogen 
atom.) 

9 When the ground electronic state 
g

+∑ is symmetric,  totalψ  remains unchanged for 

even J and changes sign for odd J. This result applies to the total wave function, 
exclusive of nuclear spin. 
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NB: J=0,2,… is symmetric with respect to ( ), ,r θ φ  Æ ( ), ,r π θ φ π− + , where as J=1,… is 
antisymmetric. 

A molecule such as H2: 

• There are two nuclei each with spin of 1
2

. The two nuclei will have total (2I+1)(2I+1)=4 

spin functions: ( ), , and / 2αα ββ αβ βα+ , and  ( ) / 2αβ βα−   
• Since nuclei with spin 1/2 act as fermions, the total wave function must be antisymmetric in 

the exchange of these two nuclei.  
• The first three spin functions are symmetric, and therefore necessarily couple with odd 

values of J to satisfy the required anti-symmetry. 
• The last spin function is anti-symmetric, therefore mut couple with even  values of J to 

satisfy the required anti-symmetry 
• Since three symmetric nuclear spin functions be combined with the odd J levels to achieve 

the correct overall antisymmetry for 
g

+∑ electronic states,  the odd J levels have a 

statistical weight of 3 and even J levels have a weight of 1. This leads to the existence of 
ortho- (parallel nuclear spins) states and para- (opposed nuclear spins) states in H2 . 

• This weighting of the rotational states will be seen shortly to have a profound effect on the 
low-temperature thermodynamics of H2. 
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More general case: 
 

• Total # of spin states : For nuclei of spin I, there are 21 + 1 spin states for each nucleus. Let 
the eigenfunctlons of these spin states be denoted by 1 2 2, , I 1α α α +" . (For H2, 1/ 2I = , so 
there are 2 spin states,α  and β ) 

• Total nuclear wave functions: For diatomic molecule, there are 
nuclear wave functions to include in ( )2

1 2(2 1) (2 1) 2 1I I I+ × + = + totalψ  (For H2, ( )22 1I + =4 
nuclear spin functions.) 

• The anti-symmetric nuclear spin functions are of the form 
(1) (2) (2) (1), 1 , 2 1i j i j i j Iα α α α− ≤ ≤ + . There are ( )( )2 1 2 2 1 2 / 2 (2 1I C I I I I+ )= + = +

1

 
such combinations for the number of antisymmetric nuclear spin functions. (For H2,  
( )2 1I I+ =  is anti-symmetric choice.) 

• The symmetric nuclear spin functions : All the remaining nuclear spin functions 
 are symmetric. (For H( ) ( ) ( )( )22 1 2 1 2 1 1I I I I I+ − + = + + 2, ( )( )2 1 1 3I I+ + =  are anti-

symmetric choices.) 
• The summary for 

g

+∑ states; 

      half-integral spin  (fermions-anti-symmetric) 
          antisymmetric nuclear spin functions couple with even J  (2 1)I I +
          symmetric nuclear spin functions couple with odd J  ( 1)(2 1)I I+ +
      integral spin  (bosons-symmetric) 
          antisymmetric nuclear spin functions couple with odd J .  (2 1)I I +
          symmetric nuclear spin functions couple with even J  ( 1)(2 1)I I+ +
 
 
 
These combinations of nuclear and rotational wave functions produce the correct symmetry 
required of the total wave function under interchange of identical nuclei. Remember that all of 
these conclusions are for 

g

+∑ electronic states, the most commonly occurring ground state. (See 

Problem 6-26 for a discussion of O2.) 
 
Even though we have considered only diatomic molecules here, the results of this section apply 
also to linear polyatomic molecules such as CO2, H2C2 . For example, the molecules HCl2Cl2H and 
DCl2Cl2D have their rotational states weighted in a similar way as H2 and D2,  Figure 6-7 shows the 
vibration-rotation spectrum of H2C2. The alternation in the intensity of these rotational lines due to 
the statistical weights is very apparent. 
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4-3 The Rotational Partition Function of a Homonuclear Diatomic Molecule 
 
The results of the previous section show that for homonuclear diatomic molecules with nuclei 
having integral spin, rotational levels with odd values of J must be coupled with the (2 1)I I +  
antisymmetric nuclear spin functions, and that rotational levels with even values of J must be 
coupled with the (  symmetric nuclear spin functions. Thus we write  1)(2 1)I I+ +
 

r

r

( 1) /
rot,nucl

even

( 1) /

odd

( ) ( 1)(2 1) (2 1)

(2 1) (2 1)

J J T

J

J J T

J

q T I I J e

I I J e

−Θ +

−Θ +

= + + +

+ + +

∑

∑
   (6-40) 

 
Likewise, or molecules with nuclei with half integer spins,  
 

r

r

( 1) /
rot,nucl

even

( 1) /

odd

( ) (2 1) (2 1)

( 1)(2 1) (2 1)

J J T

J

J J T

J

q T I I J e

I I J e

−Θ +

−Θ +

= + +

+ + + +

∑

∑
    (6-41) 

 
Notice that in this case the combined rotational and nuclear partition function does not factor into 

. This is a situation in which we cannot ignore . For most molecules at ordinary 
temperatures, , and we can replace the sum by an integral. We see then that 

rot nuclq q nuclq

r TΘ �
 

r ( 1) /

0
even odd all r

1 1 (2 1)
2 2 2

J J T

J J J

TJ e dJ
∞ −Θ +≈ ≈ ≈ + =

Θ∑ ∑ ∑ ∫   (6-42) 
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and so both  (6-40) and (6-41) become 
 

2

rot,nucl
(2 1)( )

2 r

I Tq T +
=

Θ
       (6-43) 

 
which can be written as  where rot nucl( ) ( )q T q T
 

2
rot nucl( ) ( ) (2 1)

2 r

Tq T q T I= =
Θ

+      (6-44) 

 
valid when . / 0.2r TΘ �
 
To compared to the result for a heteronuclear diatomic molecule: 
 

rot ( )
r

Tq T =
Θ

  

 
The factor of 2 that appears above in the high-temperature limit takes into account that the 
molecule is homonuclear, and so its rotational partition function is given by (6-40) or (6-41) instead 
of (6-26).  
 
This factor of 2 is called the symmetry number and is denoted by σ . It legitimately appears only 
when . Understanding the origin of this fact then, we can write / 0.2r TΘ �
 

r

2
( 1) /

rot 2
0

8 1( ) (2 1) J J T
r

J

IkTq T J e T
h

π
σ σ

−Θ +

=

≈ ≈ + Θ∑ �    (6-45) 

 
where 1σ =  for heteronuclear molecules, and 2σ =  for homonuclear diatomic molecules. 
Remember that this is applicable only to the high-temperature limit or its Euler-MacLaurin 
correction. A similar factor will appear for polyatomic molecules also. 
 

4-5 Nuclear Partition Function & Related Issues 
 
There are some interesting systems in which /r TΘ  is not small. Hydrogen is one of the most 
important such cases. Each nucleus in H2 has nuclear spin 1/2, and so 
 

r ( 1) / ( 1) /
rot,nucl

even odd

( ) (2 1) 3 (2 1) rJ J T J J T

J J

q T J e J e−Θ + −Θ += + + +∑ ∑  (6-46)  

The hydrogen with only even rotational levels allowed (antisymmetric nuclear spin function or 
"opposite " nuclear spins) is called para-hydrogen; that with only odd rotational levels allowed 
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(symmetric nuclear spin function or "parallel " nuclear spins) is called ortho-hydrogen. The ratio of 
the number of ortho-H2 molecules to the number of para-H2 molecules is 
 

r

r

( 1) /

oddortho
( 1) /

para
even

3 (2 1)

(2 1)

J J T

J
J J T

J

J e
N
N J e

−Θ +

−Θ +

+
=

+

∑
∑

 

 
Figure 6-8 shows the percentage of p-H2 versus temperature in an equilibrium mixture of ortho- 
and para-hydrogen. Note that the system is all para- at O°K and 25 percent para- at high 
temperatures. 
 

 
 
Figure 6-9 illustrates an interesting situation that occurs with low-temperature heat capacity 
measurements on H2. Equation (6-46) can be used to calculate the heat capacity of H2, and this is 
plotted in Fig. 6-9, along with the experimental results. It can be seen that the two curves are in 
great disagreement. These calculations and measurements were made at a time when quantum 
mechanics was being developed, and was not accepted by all scientists. For a while, the 
disagreement illustrated in Fig. 6-9 was a blow to the proponents of the new quantum mechanics. It 
was Dennison* who finally realized that the conversion between ortho- and para-hydrogen is 
extremely slow in the absence of a catalyst, and so when hydrogen is prepared in the laboratory at 
room temperature and then cooled down for the low-temperature heat capacity measurements, the 
room-temperature composition persists instead of the equilibrium composition. Thus the 
experimental data illustrated in Fig. 6-9 are not for an equilibrium system of ortho- and para-
hydrogen, but for a metastable system whose ortho-para composition is that of equilibrium room-
temperature hydrogen, namely, 75 percent ortho- and 25 percent para-. If one calculates the heat 
capacity of such a system, according to 
 

( ) ( )3 1ortho- para-
4 4V V VC C C= +  
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where (ortho-) is obtained from just the second term of Eq. (6-46), and (para-) is obtained 
from the first term of Eq. (6-46), one obtains excellent agreement with the experimental curve. A 
clever confirmation of this explanation was shortly after obtained by Bonhoeffer and Harteck, t 
who performed heat capacity measurements on hydrogen in the presence of activated charcoal, a 
catalyst for the ortho-para conversion. This produces an equilibrium system at each temperature. 
The experimental data are in excellent agreement with the equilibrium calculation in Fig. 6-9. 

VC VC

 
The explanation of the heat capacity of H2 was one of the great triumphs of post- quantum 
mechanical statistical mechanics. You should be able to go through a similar argument for  
sketching the equilibrium heat capacity, the pure ortho- and para- heat capacity, and finally what 
you should expect the experimental curve to be for  prepared at room temperature and at some 
other temperature, say 20 K. (See Problem 6-17.) 

2D

2D

 
In principle, such nuclear spin effects should be observable in other homonuclear molecules, but a 
glance at Table 6-1 shows that the characteristic rotational temperatures for all the other molecules 
are so small that these molecules reach the  "high-temperature limit" while still in the solid state. 
Hydrogen is somewhat unusual in that its rotational constant is so much greater than its boiling 
point. 
 
For most cases then, we can use (6-45) which, when we use the Euler-MacLaurin expansion, 
becomes 
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2 3

rot
1 4( ) 1

3 15 315
r r r

r

Tq T
T T Tσ

⎧ ⎫Θ Θ Θ⎪ ⎪⎛ ⎞ ⎛ ⎞= + + + +⎨ ⎬⎜ ⎟ ⎜ ⎟Θ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
"    (6-47) 

 
Usually only the first term of this is necessary. Some of the thermodynamic functions are (6-49) 
 

2

rot
11

3 45
r rE NkT

T T
⎧ ⎫Θ Θ⎪ ⎪⎛ ⎞= − − +⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
"          (6-48) 

2

rot
11
45

rC Nk
T

⎧ ⎫Θ⎪ ⎛ ⎞= + +⎨ ⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

"⎪
⎬           (6-49)  

2

rot
11 ln
90

r rS Nk
T T

σ⎧ ⎫Θ Θ⎪ ⎪⎛ ⎞ ⎛ ⎞= − − +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

"          (6-50) 

 
where all of these formulas are valid in the same region, in which σ  itself is a meaningful concept, 
that is,  . The terms in  and its higher powers are usually not necessary. Note that  
(6-47) is identical to (6-35) except for the occurrence of the symmetry number in (6-47). 

0.2r TΘ < /r TΘ

 

5 THERMODYNAMIC FUNCTIONS 
 
Having studied each contribution to the total partition function q in (6-17), we can write in the 
harmonic oscillator-rigid rotor approximation 
 

3/ 2 2 / 2
/

12 2

2 8( , )
1

e

h
D kT

eh

mkT IkT eq V T V e
h h e

β ν

β ν

π π ω
σ

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎡ ⎤= ⎢ ⎥⎜ ⎟ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦−⎝ ⎠⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦
    (6-51) 

 
Remember that this requires that , that only the ground electronic state is important, and 
that the zero of energy is taken to be the separated states at rest in their ground electronic states. 
Note that only  is a function of V, which, we have seen before, is responsible for the ideal gas 
equation of state. 

r TΘ �

transq

 
The thermodynamic functions associated with (6-51) are 
 

/

5 /
2 2 1

e
h kT

DE h h kT
NkT kT e kTν

ν ν
= + + −

−
         (6-52) 

 

( )
2 /

2/

5
2 1

h kT
V

h kT

C h e
Nk kT e

ν

ν

ν⎛ ⎞= + ⎜ ⎟
⎝ ⎠ −

         (6-53) 
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( )
3/ 2 5/ 2 2

/1 2
12 2 /

2 ( ) 8 /ln ln ln 1 ln
1

h kT
eh kT

m m kTS Ve IkTe h kT e
Nk h N h e

ν
ν

π π ν ω
σ

−+⎡ ⎤= + + − −⎢ ⎥ −⎣ ⎦
+              (6-54) 

 
 pV NkT=            (6-55) 
 

( )
3/ 20 2

/1 2
12 2

2 ( )( ) 8ln ln ln 1 ln
2

h kT e
e

Dm m kTT IkT hkT e
kT h h kT kT

νπµ π ν ω
σ

−+⎡ ⎤= − − + + − − −⎢ ⎥⎣ ⎦
         (6-56) 

 
Table 6-1 contains the characteristic rotational temperatures, the characteristic vibrational 

temperatures, and 0
1
2eD D hν= −   for a number of diatomic molecules. 

 
Table 6-3 presents a comparison of (6-54) with experimental data. It can be seen that the agreement 
is quite good and is typical of that found for the other thermodynamic functions.  

 

6 Further Improvements  
 

• It is possible to improve the agreement considerably by including the first corrections to the 
rigid rotor-harmonic oscillator model.  

 
• These include centrifugal distortion effects, anharmonic effects, and other extensions. The 

consideration of these effects introduces a new set of molecular constants, all of which are 
determined spectroscopically and are well tabulated. (See Problem 6-24.)  

 
• The use of such additional parameters from spectroscopic data can give calculated values of 

the entropy and heat capacity that are actually more accurate than experimental ones. 
 

• Note that extremely accurate calculations require a sophisticated knowledge of molecular 
spectroscopy.  
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