Optimization of a high-efficiency jet ejector by using computational fluid dynamic (CFD) software

Somsak Watanawanavet

Artie Mc.Ferrin Department of Chemical Engineering Texas A&M University

1. Introduction

- 1.1 Jet ejector advantages and applications
- 1.2 List of parameters
 - flow parameters
 - geometric parameters
- 1.3 Operating principle
- 1.4 Jet ejector types
 - constant-pressure jet ejector
 - constant-area jet ejector
- 1.5 High-efficiency jet ejector

www.graham-mfg.com

ChE Tes AM Linety

1.1 Jet ejector advantages

Jet ejector advantages

- easy maintenance, because no moving parts
- low capital cost
- easily installed

Jet ejector disadvantage

low efficiency device

www.artisanind.com

1.1 Jet ejector applications

Jet ejector applications

- vacuum distillation
- evaporation
- drying

- filtration
- desalination

Diagram showing a jet ejector implemented in a desalination process

1.2 List of parameters

Flow parameters

Compression ratio = $\frac{P_o}{P_p}$ **Entrianmen t ratio** = **Mass flow ratio** = $\frac{M_m}{M_p}$

1.2 List of parameters

Geometric parameters

Dimensionless geometric parameters

 $\frac{L_T}{D_p}, \frac{D_T}{D_p}, \frac{D_n}{D_n},$

 $\frac{D_o}{D} = 1$

1.3 Operating principle

1.4 Jet ejector types

Constant-pressure (conventional) jet ejector

Constant-area jet ejector

1.5 High-efficiency jet ejector

The key idea

Minimize the velocity difference between motive and propelled stream

Mathematical verification of the key idea

1.5 High-efficiency jet ejector

Conventional jet ejector

- large different velocitites

 $M_m = 1.0 \text{ kg/s}$ $v_m = 10 \text{ m/s}$ $M_p = 1.0 \text{ kg/s}$ $v_p = 1 \text{ m/s}$ Kinetic energy $(E_k)_m = 50 \text{ J/s}$ $(E_k)_p = 0.5 \text{ J/s}$ $\eta = \frac{(E_k)_{mixture}}{(E_k)_p + (E_k)_m} = \frac{27.5 \text{ J/s}}{0.5 \text{ J/s} + 50 \text{ J/s}}$ $\eta = 0.545$

$$M_{mix} = 2.0 \text{ kg/s}$$

$$v_{mixture} = 5.5 \text{ m/s}$$

Kinetic energy
$$(E_k)_{mixture} = 27.5 \text{ J/s}$$

1.5 High-efficiency jet ejector

High-efficiency jet ejector

- small different velocitites

 $M_m = 1.0 \text{ kg/s}$ $v_m = 10 \text{ m/s}$ $M_p = 1.0 \text{ kg/s} \quad v_p = 6 \text{ m/s}$ Kinetic energy $(E_k)_m = 50 \text{ J/s}$ $(E_k)_p = 18 \text{ J/s}$ $\eta = \frac{(E_k)_{mixture}}{(E_k)_p + (E_k)_m} = \frac{\frac{64}{S}}{\frac{18}{J_{+} + 50}}$ n = 0.941

 $M_{mix} = 2.0 \text{ kg/s}$ $v_{mixture} = \frac{8}{m/s}$

Kinetic energy $(E_k)_{mixture} = 64 \text{ J/s}$

Implement the key idea for a high-efficiency jet ejector

1.5 High-efficiency jet ejector

Conventional jet ejector

High-efficiency jet ejector

There are 3 reasons why this research is needed.

1. The results of the optimum geometry summarized by Kroll are not consistent; therefore, it is hard to rely on them.

Reference	Length of			Angle of Diffuser (degree)		
Air-Jet Air Pumps	Throat	Divergence	Nozzle Outlet to Discharge	Nozzle Outlet to Throat	Convergence	Divergence
symbol	LT	R	S	X	α	θ
Keenan and Neumann (1942)	7 D _T	-	7.5 D _T	0.5 <i>D</i> _T	well rounded	-
Mellanby (1928)	$4 D_T$	$10 D_T$	-	variable	25	12
Kravath (1940)	$1 D_T$	$12 D_T$	15 <i>D</i> _T	$2 D_T$	28	5
Miller (1940)		_	-	$5 D_T$	-	16
Steam-Jet Air Pumps	Steam-Jet Air Pumps					
DuPerow and Bossart (1927)	-	-	6 <i>D</i> _T	$1.2 D_T$	-	7
Royds and Johnson (1941)	10 <i>D</i> _T	15 D _T	-	-	well rounded	-
Langhaar (1946)	$3 D_T$	$4 D_T$	$10 D_T$	3	24	10
Watson (1933)	$2 D_T$	6.7 <i>D</i> _T	$12.3 D_T$	3.6 <i>D</i> _T	28	8

summary of literature results about the optimization of the jet ejector (Kroll, 1947).

2. A well-know chart for designing a jet ejector (DeFrate and Hoerl (1959)):

- Limited compression ratio (1 to 10)
 - In my research, compression ratio (1 to 60)
- Poor description of optimal geometry

 D_T/D_n

Optimum $D_n \times$ $D_n/D_p \times$ $D_T/D_p \times$ $L_T \times$

FIG. 10-102 Design curves for optimum single-stage ejectors. [DeFrate and Hoerl, Chem. Eng. Prog., 55, Symp. Ser. 21, 46 (1959).]

Design curves for optimum single-stage ejectors (DeFrate and Hoerl, 1959). source: Perry's chemical engineering handbook; 7th edition, pg. 10-57

3. Few literature studies on the effect of nozzle diameter on jet ejector performance.

In my research, an optimum nozzle diameter (D_n) is investigated as the function of motive velocity (170 to 1104 m/s).

3. Verify CFD software

Computational fluid dynamic (CFD) software: Gambit & Fluent 2D

Procedure:

Generate a 2-dimension axi-symetric jet ejector geometry in the Gambit and asking them simulate fluid flow inside the geometry by using the Fluent 2d. Fluent 2D uses a mass-average segregated solver to solve the fundamental transport equations such as continuity, momentum conservation, and momentum conservation for compressible, Newtonian fluid (the Navier-Stokes equation).

It is a crucial step to verify the software reliability before applying it in the research.

3. Verify CFD software

Questions on the CFD software?

1. Which boundary condition should be applied in model?

2. What is an optimum number of grid elements?

The number of grid elements affects the result quality.

3. What is an optimum number of iterations?

The number of iterations affects the result convergence.

3.1 Software boundary condition

Available boundary condition in the software				
Model position				
Propelled stream inlet ????	Motive stream inlet	Box at the jet ejector outlet		
Total pressure	Total pressure	Total pressure		
Mass flow rate	Mass flow rate	Mass flow rate		

1. Which boundary condition should be applied in model?

There are 2 boundary conditions available:

1. Total pressure:

work better at static condition

2. Mass flow rate:

work better at dynamic condition

3.1 Software boundary condition

Comparing boundary condition

Both boundary conditions are approaching the same result, but the total pressure boundary condition requires much larger number of iterations. As a consequence, it requires much more time consumption and memory resources.

3.1 Software boundary condition

The mass flow rate boundary condition gives convergence more quickly than the total pressure boundary condition; therefore, the mass flow rate boundary condition was used for the propelled stream inlet boundary condition in the research.

Available boundary condition in the software				
Model position				
Propelled stream inlet	Motive stream inlet	Box at the jet ejector outlet		
Total pressure	Total pressure	Total pressure		
Mass flow rate	Mass flow rate	Mass flow rate		

3.2 Number of grid elements and iterations

An optimum number of grid elements and iterations

1. An optimum number of grid elements :

the more grid elements, the better result quality is. But it will consume an enormous time and memory space.

2. Number of iterations:

The number of iterations affects the result convergence. After a particular iterations, the result will not change a lot because it has already converged.

"It is worth to investigate an optimum number of grid elements and iterations to obtain simulation results as fast as possible, but still maintain high quality."

3.2 Number of grid elements and iterations

Coarser grid*

Number of		Pressure (F	Pa)	Efficiency	Compression Ratio	(h)
iterations	Motive	Inlet	Outlet			Time consumed
2500	97842	98124	101326	0.978	1.033	2
4500	97785	98031	101325	0.978	1.034	3
6000	97785	98031	101325	0.978	1.034	4

Finer grid*

Number of		Pressure (Pa	ı)	Efficiency	Compression ratio	(h)
iterations	Motive	Inlet	Outlet			Time consumed
2500	97793	98061	101325	0.978	1.033	5
4500	97764	98008	101327	0.979	1.034	7
6000	97762	98003	101327	0.979	1.034	10

* The experiment was included the effect of compressible fluid

3.3 Verify software accuracy

Software accuracy

Simulation results was compared with experiment results.

The jet ejector geometry in the model is exactly the same as in experimental apparatuses.

Air is used as a working fluid for motive and propelled stream at various motive velocity (411 to 563 m/s)

3.3 Verify software accuracy

3.3 Verify software accuracy

The simulation results obtained directly from the first-principle model (no adjustable parameters required).

The simulation results lie approximately on the experiment results in every case. The average overall deviation between the simulation and experiment results is 8.19%

Things obtained from this stage:

- The proper model boundary condition
- An optimum number of grid elements (coarser grid size)
- An optimum number of iterations (2,500 iterations)
- Software can provide satisfactory results and highly accuracy.

The jet ejector optimization procedure:

Conventional efficiency equation:

Why a new efficiency equation has to be derived?

1. A conventional efficiency equation does not account for the kinetic energy term, which is incorrect.

2. A conventional efficiency equation does not interface with CFD software.

New-derived efficiency equation:

Energy components

Kinetic energy $\dot{E}_k = \frac{1}{2}\dot{m}v^2$

Pressure energy

$$\dot{E}_{p} = \dot{m} \left(\frac{\gamma - 1}{\gamma} \right) RT \left| \left(\frac{P_{2}}{P_{1}} \right)^{\frac{\gamma}{\gamma - 1}} - 1 \right|$$

Flow work

$$F_W = P\hat{V}$$

New-derived efficiency equation

Optimized parameters: A constant-pressure jet ejector $r \downarrow L_c \downarrow L_r \downarrow L_r$ $D_c \downarrow D_r$ A constant-area jet ejector D_r D_r

Optimization conditions:

Steam using as a working fluid for both propelled and motive stream.

Motive velocity from 170 to 850 m/s

Mass flow ratio from 0.023 to 100

Nozzle is placed at the beginning of the throat section (x = 0; ESDU recommendation).

Exit pressure = 1 atm.

Nozzle diameter ratio is not included in this study. The nozzle diameter ratio is specified at 0.029

Compression ratio

Efficiency

 $V_m = 680 \text{ m/s}$

The constant-area jet ejector produce higher performance (compression ratio and efficiency) for all motive velocity and mass flow ratio; therefore, it was selected to study in the next stage (optimization stage). The advantage is more pronounce at low motive velocity.

Optimized geometric parameters:

Throat length ratio (L_T/D_p) , throat diameter ratio (D_T/D_p) , and nozzle diameter ratio (0.01 to 0.05; D_n/D_p)

Independent parameters:

Motive velocity (170 to 1104* m/s; V_m), mass flow ratio (0.01 to 100; M_m/M_p)

Dependent parameters:

Compression ratio (P_o/P_p) , efficiency (η)

(Exit pressure = 1 atm.)

^{*}According to the literature (Lines and Smith, 1997), the conventional operating motive velocity is between 900 and 1200 m/s. Numerical problem prevents investigation above 1104m/s.

Optimization procedure

Original model

Point number	x-coordinate	y-coordinate
1	0	105.7783
2	97.79	39.8653
3	1,367.79	39.8653
4	2,442.21	105.7783

Optimized geometric parameter results

Optimum throat diameter ratio (D_T/D_p)

Optimum throat diameter ratio increases as function of motive velocity and inverse function of mass flow ratio.

The optimum throat diameter ratio increases dramatically when the mass flow ratio is lower than 5.0 for all motive velocity.

Optimized geometric parameter results

Optimum throat length ratio (L_T/D_p)

Optimum throat length ratio increases as function of motive velocity and inverse function of mass flow ratio.

The optimum throat length ratio increases dramatically when the mass flow ratio is lower than 5.0 for all motive velocity.

Optimized geometric parameter results

Optimum nozzle diameter ratio (D_n/D_p)

Motive velocity $(m/s; V_m)$	Optimum nozzle diameter ratio (D_n/D_p)
170	0.050
340	0.046
510	0.044
680	0.044
850	0.044
1020	0.030
1104	0.030

The optimum nozzle diameter ratio decreases at higher motive velocity.

Dependent parameter results

Compression ratio (P_o/P_p)

Compression ratio increases when motive velocity increases and mass flow ratio increases.

The compression ratio does not increase much at low motive velocity (< 850 m/s), but it increases drastically at high motive velocity (> 850 m/s).

For every motive velocity, the compression ratio starts increasing significantly at the mass flow ratio higher than 1.0

The maximum compression ratio is 58.45 at motive velocity 1020 m/s and mass flow ratio 100.

Dependent parameter results

Efficiency

Efficiency decreases at higher mass flow ratio and motive velocity.

The efficiency decreases considerable at the mass flow ratio less than 10. But the rate of efficiency decreasing reduces at the mass flow ratio greater than 10.

The minimum efficiency is 11.79% at motive velocity 1020 m/s and mass flow ratio 100.

Optimization progress

Operating condition:

motive velocity 340 (low), 680 (medium), and 1020 (high) m/s and operating pressure at 1 atm.

The length between two nozzle exit of each two-stage nozzle designs were optimized. The design providing the greatest jet ejector performance was selected to compare with the optimum single-stage nozzle jet ejector.

Ln =length between two nozzle exit in two-stage nozzle design

Compression ratio

 $V_m = 1020 \text{ m/s}$

The single-stage nozzle jet ejector produces higher compression ratio for every mass flow ratio and motive velocity.

Efficiency

The single-stage nozzle jet ejector provide higher efficiency for every mass flow ratio and motive velocity.

The single-stage nozzle jet ejector provide higher on both of compression ratio and efficiency. Because the friction loss occurs at the surface between two nozzle exit in twostage nozzle design. It reduces the jet ejector performance.

Optimum vs. AMETEK jet ejectors

AMETEK, Inc. is a well-known manufacture for jet ejector.

The objective is to indicate the reduction of motive-steam consumption between an optimum jet ejector and a conventional jet ejector operating in chemical industrial processes.

Motive velocities at 850 and 1020 m/s were selected in this analysis. Steam is applied as a working fluid.

Total pressure at the jet ejector outlet is defined at 1 atm.

Percent reduction in motive-steam usage

Percent reduction =

$$= \left(\frac{\text{AMETEK} - \text{Optimal}}{\text{AMETEK}}\right) \times 100$$

Compression ratio (P_o/P_p)	Percent reduction			
	Motive velocity 850 m/s	Motive velocity 1020 m/s		
1.5	32.00	16.67		
3.0	15.26	12.93		
4.0	12.93	10.94		

It appears that the optimal jet ejector consumes less motive steam than AMETEK jet ejectors by 10–30%. These simulation results must be verified by hardware.

5. Conclusions

- 1. In the CFD software, the average overall deviation between the simulation and experiment results is 8.19% thus confirm the accuracy of results.
- 2. Constant-area jet ejector produces greater performance (compression ratio and efficiency) than constant-pressure jet ejector.
- 3. In constant-area jet ejector, the optimum throat diameter ratio, throat length ratio, and nozzle diameter ratio are identified as the function of motive velocity (170-1104 m/s) and mass flow ratio (0.01-100).
- 4. Single-stage nozzle jet ejector produces a greater performance than two-stage nozzle jet ejector. Because the friction loss at surface between two nozzle exit in two-stage nozzle jet ejector causes the reduction on jet ejector performance.
- An optimum jet ejector consumes motive-steam less than AMETEK jet ejector by 10-30%. However, the results need to be verified by hardware.

6. Acknowledgement

Chair-committee: Dr. Mark T. Holtzapple Committee: Dr. Charles J. Glover Dr. Othon K. Rediniotis Dr. Richard R. Davison Garnesh Mohan Manohar Wishvanathappa My research group members Shell Company

Introduction
 Literature review (optimization)
 Research motivation
 Research procedure
 Methodologies and results
 Conclusions
 Future work
 Acknowledgement

