Convergence to Most Probable Macrostate

In class we did the example of three particles (A, B, and C) which could have energy levels of $0,1,2$, or 3 units, with a total energy of 3 units. We identified three possible macrostates with, 1) one particle having 3 units of energy, and the other two having zero, 2) one particle having 2 units, one having 1 , and the last having zero, and 3) all particles having 1 unit of energy. We found that there were 3 microstates for the 1st macrostate, 6 for the second, and 1 for the third, resulting in macrostate probabilities of $0.3,0.6$, and 0.1.

Let's extend this problem to the limit of large number of particles. We have the same energy levels (0 , $1,2,3$), and the same total energy (3 units), but now we have N particles, where $N>3$.

We'll have the same essential macrostates, with the additional caveat that we have a lot more particles with zero energy.

Macrostate 1: One particle has 3 units of energy, and all others have zero.
Macrostate 2: One particle has 2 units of energy, one has 1, and all others have zero.

Macrostate 3: Three different particles have one unit of energy.
Let's calculate the number of ways each macrostate can happen for N total particles. That is, let's calculate the number of microstates for each macrostate for a given N.

Macrostate 1: We have N particles, and only one can have energy, so we have N microstates.

Macrostate 2: One particle gets 2 units of energy. There are N particles that can have the 2 units. Once the particle with 2 units is selected, there are ($N-1$) remaining choices for the particle with 1 unit, so the total number of microstates is $N(N-1)$.

Macrostate 3: Now three particles get energy. Following the reasoning above, there are N choices for the first one to get 1 unit, $N-1$ for the second particle to get 1 unit, and $N-2$ for third one. But we've overcounted again here, since the ordering (who gets the first and who gets the last, etc.) doesn't matter. For each set of 3 particles with one unit of energy, we've overcounted by $3!$ or 6 , so the total number of microstates is $N(N-1)(N-2) / 6$.

So the total number of microstates is:

$$
\begin{equation*}
\Omega=\Omega_{1}+\Omega_{2}+\Omega_{3}=N+N(N-1)+\frac{N(N-1)(N-2)}{6} \tag{1}
\end{equation*}
$$

and the fraction in each macrostate is simply Ω_{i} / Ω. You can verify our results from class by substituting $N=3$ into the expression above. The calculations for increasing N are shown in the attached spreadsheet. At $N=3$, our starting condition, Macrostate 3 , the evenly distributed energy case, is least probable, but its probability rapidly increases with N while the probability of Macrostate 2 decreases, and that of Macrostate 1 decreases most rapidly. By one million particles, the fraction of microstates in the most probable macrostate is already 99.9994% of the total. For real systems at $N>10^{20}$ microstates not in the most probable microstate will account for of the order of 10^{-20} of the total - a truly negligible amount.

	Number of microstates					Fraction of total microstates		
N	Ω_{1}	Ω_{2}	Ω_{3}	$\Omega_{\text {TOT }}$	f_{1}	f_{2}	f_{3}	
3	3	6	1	10	0.300	0.600	0.100	
4	4	12	4	20	0.200	0.600	0.200	
5	5	20	10	35	0.143	0.571	0.286	
10	10	90	120	220	0.045	0.409	0.545	
100	100	9900	161700	171700	0.001	0.058	0.942	
1000	1000	$9.99 \mathrm{E}+05$	$1.66 \mathrm{E}+08$	$1.67 \mathrm{E}+08$	$5.98 \mathrm{E}-06$	0.00598	0.99402	
10000	10000	$1.00 \mathrm{E}+08$	$1.67 \mathrm{E}+11$	$1.67 \mathrm{E}+11$	$6.00 \mathrm{E}-08$	$6.00 \mathrm{E}-04$	0.99940	
100000	$1.00 \mathrm{E}+05$	$1.00 \mathrm{E}+10$	$1.67 \mathrm{E}+14$	$1.67 \mathrm{E}+14$	$6.00 \mathrm{E}-10$	$6.00 \mathrm{E}-05$	0.99994	
$1.00 \mathrm{E}+06$	$1.00 \mathrm{E}+06$	$1.00 \mathrm{E}+12$	$1.67 \mathrm{E}+17$	$1.67 \mathrm{E}+17$	$6.00 \mathrm{E}-12$	$6.00 \mathrm{E}-06$	0.999994	
$1.00 \mathrm{E}+09$	$1.00 \mathrm{E}+09$	$1.00 \mathrm{E}+18$	$1.67 \mathrm{E}+26$	$1.67 \mathrm{E}+26$	$6.00 \mathrm{E}-18$	$6.00 \mathrm{E}-09$	0.99999999	
$1.00 \mathrm{E}+12$	$1.00 \mathrm{E}+12$	$1.00 \mathrm{E}+24$	$1.67 \mathrm{E}+35$	$1.67 \mathrm{E}+35$	$6.00 \mathrm{E}-24$	$6.00 \mathrm{E}-12$	1	

