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REVIEW OF ATOMIC TERM SYMBOLS

I. The Meaning of an Atomic Term Symbol

Because the operators t2, 82, j2 = (L + 8)2, and jz all commute with the atomic

Hamiltonian, ii, and with each other in the limit of negligible spin-orbit coupling, it is

possible to classify the eigenfunctions of this Hamiltonian according to the L, S, J, and MJ

quantum numbers which define the eigenvalues of these operators, respectively. In common

parlance these quantum numbers are called the" good" quantum numbers because the

eigenfunctions of the Hamiltonian, ii, are also eigenfunctions of these operators. Thus, these

operators represent quantities which for a given energy level are precisely known with no

uncertainty whatsoever. (Again, this is valid only in the limit of small spin-orbit coupling).

The resulting eigenvalues can then be used to classify the eigenfunction in question. If we

neglect MJ, we can summarize these good quantum numbers for an atomic eigenfunction in the

general form of (2S +1)LJ. This representation of the atomic eigenfunction really has two parts.

The first is the (28+ l)L portion which defines the term for the atomic eigenfunction and is

known as the term symbol. The value of J, appended as a right subscript, defines the level.

Further specifying the MJ quantum number would define the state for the atomic

eigenfunction. In principle, then, it should be straightforward to classify an atomic

eigenfunction with S=I, L=2, and J=1 by an atomic term symbol written as 321. By a long

tradition stretching back to the time when atomic spectroscopy was ignorant of the full

quantum nature of the atom, however, this is not the way atomic term symbols are written.

Instead, the numerical value of L is replaced with a unique capital letter according to the code

shown in the following table.

Value of L 0 1 2 3 4 5
Term Symbol Code S P D F G H

U sing this code, the same eigenfunction would be classified with the atomic term symbol 3D1,

which should be read as "triplet done."
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There is another operator of relevance to atomic term symbols that commutes with the

atomic Hamiltonian (even with spin-orbit coupling considered). This is the operator for the

inversion of the atom-fixed coordinates of all electrons through the center of mass of the atom,

which is the nucleus for all practical purposes. This operator is denoted i, and when it is

allowed to act on an atomic eigenfunction the result is either + 1 or -1. If the result is + 1, the

eigenfunction is designated as "g" (gerade or even); whereas, if the result is -1 the

eigenfunction is designated "u" (ungerade or odd). Unlike orbital angular momentum, spin,

and total angular momentum, we do not give the eigenvalue of i the symbol i. Instead, we

call this eigenvalue the parity of an atomic eigenfunction. The parity of an atomic

eigenfunction is designated in an atomic term symbol as a right subscript" g" or "u". If both J

and parity are to be designated, the value of J is typically listed first, followed by a comma

and then the parity. There is an alternate notation that does not use the "g" and "u" labels but

instead denotes ungerade terms with a right superscript" 0" and leaves the gerade terms

unmodified. This is the notation I will most frequently use.

Two essential concepts necessary for a full understanding of atomic term symbols are
...

(1) that the angular momenta operators L, S, and J are vectors and (2) that the quantum

numbers L, S, and J designate the length of these vectors, respectively. Because L, S, and J

designate the length of vectors, the value of J can be found from L and S only by using vector

addition on L and S. The resultant allowed values for J, given L and S, are specified by I L -

S I ~ J ~ L + S. In the absence of spin-orbit coupling all of the various J levels deriving

from a given atomic term (a given set of values for L and S) will be degenerate. It is only the

existence of spin-orbit coupling that leads to a splitting of the atomic tenn into its J levels. If

spin-orbit coupling is sufficiently strong, however, it is no longer appropriate to consider L

and S as good quantum numbers. The L 2 and 82 operators no longer commute with the full

Hamiltonian for the atomic system which must now contain a significant spin-orbit term. This

is because the spin-orbit interaction can mix states differing by one unit in L and S. In

practice this does not occur to a significant degree until one reaches heavier elements. In such

cases the only operators which still commute with the Hamiltonian including spin-orbit

interaction are j2 and inversion, i, so the only remaining good quantum numbers are J and

,..~.. '"
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parity. As a result the electronic states of some of the heavier elements areJ.ust denoted by J
g/u

or by J and a superscript "0" for ungerade states.

II. Derivation of Atomic Term Symbols from Electronic Configurations

A. The combination of term symbols assigned for the occupied subshells

The various atomic term symbols which derive from a given electronic configuration

may be obtained by breaking the electronic configuration up into its component subshells,

assigning term symbols to each, and then combining the term symbols using vector addition.

For example, an excited configuration of carbon is the Is~i2pl3d1 configuration. By

examining the individual subshells we see that the atom may be broken up into a Ii subshell,

a 2i subshell, a 2pl subshell, and a 3d1 sub shell. Now that the configuration has been broken

up into its component subshells, we must assign term symbols to each. In this case the Ii

subshell is a closed subshell so it has no net spin (S=O, 2S+ 1 = 1) or orbital angular

momentum (L=O). The term symbol for this subshell configuration is therefore IS. Likewise,

the 2s2 subshell also gives a IS term symbol. The 2pl subshell has a single unpaired electron

which means that it possess non-zero spin (S=I/2, 2S+1=2), and because the electron is in a

p orbital it possess one unit of orbital angular momentum (L = 1). The p orbital wavefunction

changes sign when all the coordinates are inverted through the nucleus which means that the

wavefunction is odd, or ungerade. All of this information about the 2pl subshell can be

summarized by the term symbol 2po. By a similar analysis the 3d1 subshell gives the term

symbol2D (S = 1/2, L=2). We can now combine all of these term symbols for the four

different subshells CS, IS, 2po, 2D) by doing three things.

First, we take the vector sum of all the values of S to obtain all the possible resultant

values of S. The vector sum of (0+0+ 1/2+ 1/2) is simply 11/2 -1/21 ~ S ~ 1/2 + 1/2

which means that the resultant value of S can range from 0 to 1 in steps of one. This means

that S can only be 0 or 1, S =0 or 1. Note that we do not need to consider the S = 0 subshells

because they will leave the total S unaltered. In a similar fashion we next need to find the

vector sum of the L values for each subshell. The vector sum of (0 + 0 + 1 + 2) is

""""".,.~"--
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11 -2/ s L s 1 + 2 which means that L can range from 1 to 3 in steps of 1. In other words,

L = 1, 2, or 3. Finally, we need to find the combined parity by multiplying the parities of the

individual subshells. The following rules for multiplying parities should be remembered:

g x g = g g x u = u u x g = u u x u = g.

In our example, we need to multiply g x g x u x g. The multiplication is associative so we

can straight away write down that the result is u. All the terms will be odd in parity.

At this point we have all the information necessary to write down the term symbols that

result from the atomic configuration lr2r2pl3dl of carbon. Before doing so it is important to

keep in mind that the p and d electrons are independent in the sense that nothing restricts the

orientation of their spins relative to each other. In other words, it is perfectly possible for both

electrons to be spin up because no Pauli principle applies to them. Because this is the case,

each of the possible spins determined above (0 and 1) can combine with each of the possible

orbital angular momenta (1, 2, and 3) to give the possible term symbols for this configuration.

And, of course, all the terms will be odd in parity. The terms that result from the

confi guration ls22s22nl3dl are thus lp. ID. IF. 3p. 3D. and 3F.'Y , , , " .

I have presented this in this way so that you can see how to combine subshells and

generate term symbols for more complicated configurations. For example, many of the

excited states of palladium derive from the Is22r2p63r3p64r3d1O4p64d8Ss1Spl configuration.

Because the lowest energy term of the 4d8 configuration is 3F (something you will be able to

determine for yourself after reading this entire review), you can deduce that the lowest energy

terms of this configuration in palladium derive from a coupling of the partially filled 4d 8, 3F

subshell with the SSI fS) and the Spl fP1 subshells of the atom.

Another reason for presenting this in this way is that it makes it absolutely clear why

we don't need to consider the closed shells of a configuration. These always have S=O and

L=O and gerade (even) parity. As such, they contribute nothing to the total S, L, or parity of

the overall atom and may be ignored.
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B. Partially f"illed subshells

When one is dealing with partially filled subshells as in the 1?2?2p2 ground

configuration of the carbon atom or the 4d 8 subshell of palladium, one cannot simply consider

all possible angular momentum couplings of the two 2p electrons (or the eight 4d electrons).

This is because the electrons are in the same subshell and the Pauli principle will prevent some

of the angular momentum couplings which might be possible if the electrons were in different

sub shells. For example, if one were to use the procedure outlined above to derive the possible

terms for the ground configuration of the carbon atom one would obtain six possible terms:

IS, lp, ID, 3S, 3p, and 3D. This is just not correct, however, because Pauli will forbid some

of these terms. These would be the correct set of terms for a configuration in which the two p

electrons occupied different subshells such as in the 1?2s22p13pl configuration. The remainder

of this section is dedicated to illustrating how the Pauli Principle restricts the allowed term

symbols deriving from the configuration in which the two p electrons occupy the same

sub shell.

Let's first consider all possible arrangements of the 2p2 electrons in the three 2p orbitals

which have m, = + 1, 0, and -1. Because the first electron can be placed in any of the three

orbitals, either spin up or spin down, there are 6 places it can go. The Pauli Principle says the

second electron can occupy one of the remaining 5 spin-orbitals, but it absolutely cannot go

into the same orbital with the same spin as the first electron. Thus one might expect there to

be 6 possible assignments for electron one and 5 for electron two, yielding 30 different

possible arrangements of the electrons in the 2p2 configuration, but this is incorrect. It is

immaterial in which order we assign electron one and electron two to the available orbitals

because the electrons are, in fact, indistinguishable. To be precise, we should not be calling

them electron one and electron two. We should refer to them as electron and electron, but this

makes it hopelessly difficult to keep track of what we are doing. We therefore must correct

our result of 30 possible arrangements by dividing this number by 2!, to get 15 different

electronic arrangements for the 2p2 configuration. To convince you this is true, only one

example need be given. Consider assigning electron one to the orbital with m, = + 1 spin up~
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and electron two to the orbital with m, = 0 spin down. Because the electrons are

indistinguishable, this is exactly the same assignment as electron one in m, = 0 spin down and

electron two in m, = + 1 spin up. They should not be counted as separate arrangements. This

is the reason for the division by 2!.

The following table summarizes all the possible arrangements of electrons in the 2p2

configuration in the 2p orbitals. The spin of the electrons in each arrangement is indicated by

arrows that point either up or down for spin up and spin down. Here, ML represents the

algebraic sum of the value of m, for each electron while Ms is the algebraic sum of the value

of ms for each electron.

mQ=+l r! r r ! ! r r ! !

mQ =0 r ! r! r ! r r ! !

mQ = -1 r ! r ! r ! r ! r !

ML 2 a -2 1 1 1 1 a a a a -1 -1 -1 -1

Ms a a a 1 a a -1 1 a a -1 1 a 0 -1

By examining this table and noting the highest value of ML and the highest value of Ms

that occurs with this value of ML (in this case, ML = 2 and Ms = 0) we can deduce that the

ground configuration of carbon must generate a term with L and S equal to these values of ML

and Ms. Since ML and Ms are really projections of L and S along some fixed laboratory axis,

they can be no larger than the length of their corresponding vector. Remember, L and S are

vector lengths. We are deducing that because no greater value of ML exists, there must be a

term with L=2. Thus, our 2p2 configuration does generate an L = 2, S = 0 CD) term.

Moreover, a lD term generates pairs of (ML, Ms) values corresponding to (2,0), (1,0), (0,0),

(-1,0), and (-2,0). These values result because a vector with length L = 2 can have a

projection along a laboratory fixed axis of 2, 1, 0, -1, and -2. All such arrangements of
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electrons in these orbitals thus constitute the ID term and must be deleted from further

consideration. Accordingly, arbitrarily chosen entries in the table which possess the above

listed (ML, Ms) pairs may be assigned to the ID term to give the new table listed below:

mQ= + 1 r 1 r r 1 1 r r 1 1

mQ =0 r 1 r 1 r 1 r r 1 1

mQ = -1 r 1 r 1 r 1 r 1 r 1

M 2 0 -2 1 1 1 I 0 0 0 0 -1 -1 -1 -1L

Ms 0 0 0 1 0 0 -1 1 0 0 -1 1 0 0 -1

I Tenn liD liD liD I liD I I I I I I I liD I I I

Next, we need to examine the various remaining entries in the table to locate the largest

ML and the largest Ms that occurs with it. In this case, these are ML = 1 and

Ms = 1. This implies the existence of an L = 1, S = 1 (3p) term. A 3p term generates (ML,

Ms) = (1,1), (1,0), (1,-1), (0,1), (0,0), (0,-1), (-1,1), (-1,0), and (-1,-1). Again, arbitrary

entries in the table corresponding to these values may be assigned as 3p to give another

revision in the table:

mQ= + 1 r 1 r r 1 1 r r 1 1

mQ =0 r 1 r 1 r 1 r r 1 1

mQ = -1 r 1 T 1 T 1 T 1 T 1

M 2 0 -2 1 1 1 1 0 0 0 0 -1 -1 -:l -1L

MOO 0 1 0 0 -1 1 0 0 -1 1 0 0 -1s

Term ID ID ID 3p ID 3p 3p 3p 3p 3p 3p ID 3p 3p

!
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Finally we note that there is one unassigned state left in the table, corresponding to ML

= 0 and Ms = O. This must be due to a IS term, which gives only this one (ML, Ms)

combination. It is designated as the IS term in the final revision of the table:

I

mQ= + 1 T! T T ! ! T T ! !

mQ =0 T ! T! T ! T T ! !

mQ=-l T! T ! T ! T ! T !

ML 2 0 -2 1 1 I I 0 0 0 0 -1 -1 -:l -1

Ms 0 0 0 1 0 0 -1 1 0 0 -1 1 0 0 -1

Term ID ID lD 3p ID 3p 3p 3p 3p IS 3p 3p ID 3p 3p

Note that these designations of the entries in the table as ID, IS, or 3p does not mean

that the particular orbital occupations indicated by the arrows correspond to these term

symbols. All that one can really state definitely about any particular orbital occupation

indicated by the arrows are what the resulting values of ML and Ms are. Thus, for example,

the first entry in the table corresponding to (ML, Ms) = (2,0) must correspond to a ID term,

since none of the other terms gives ML = 2. On the other hand, there are three entries in the

table with (ML, Ms) = (0,0), and one of these arises from ID, one from IS, and one from 3p.

There is no way (at this point) to tell which is which. In fact, the ML = 0,

Ms = 0 state arising from the ID term is a linear combination of these three orbital

occupations, the ML = 0, Ms = 0 state arising from the IS term is a different linear

combination of these three orbital occupations, and the ML = 0, Ms = 0 state arising from the

3p term is yet another linear combination of the same three orbital occupations.

The net result of all this is that the 2p2 configuration gives only the IS, 3p, and ID

terms, while the 2pl3pl configuration gives IS, lp, ID, 3S, 3p, and 3D terms. The fact that the

two p electrons are in the same subshell in the 2p2 configuration causes some of the terms
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which occur in the 2p13pl configuration to be forbidden due to the Pauli exclusion principle.

Thus, the procedure for determining the terms deriving from a partially filled subshell are as

follows:

1. Tabulate all the possible arrangements of electrons in the orbitals in question in
a manner consistent with the Pauli principle.

2. Find the value of ML and Ms for each arrangement.

3. Find the largest value of ML and the largest Ms that goes with it.

4. Allow L = ML and S = Ms and assign this L,S pair to the appropriate term.

5. Find all other ML, Ms pairs that can arise from the previously determined L,S
pair (term) and arbitrarily assign table entries with these same ML, Ms pairs to
the same term until all pairs for this term have been assigned.

6. Return to step 3 and continue repeating until all entries have been assigned.

If one were to carry out this procedure for any possible configuration of p and d

electrons one would arrive at the following list of terms.

Configuration ~
P2 P4 IS ID 3p

, , ,
3 2p. 2D. 4S.

P , ,
.il .J8 Is ID IG 3p 3Fa,a , , , ,
d3 dry 2p 2D (2 terms) 2F 2G 2H 4p 4F, " , , , ,
tf, tf' IS (2 terms), ID (2 terms), IF, IG (2 terms), 11,

3p (2 terms), 3D, 3F (2 terms), 3G, 3H, 5D
~ 2S, 2p, 2D (3 terms), 2F (2 terms), 2G (2 terms),

2H 21 4p 4D 4F 4G 6S, , , , , ,

It is useful to note that if one does not remember this table or have it available, the terms for

configurations such as tJB can be derived easily by considering only the holes in the d shell.

The terms that arise are exactly the same.

Finally, one may note that the parity of the terms arising from a partially filled subshell

is easily determined by counting the number of electrons in orbitals of odd parity (i.e., p, f, h



10

orbitals). If this number is odd, then the parity of the resulting terms is odd or ungerade (as in

thep3 configuration listed above). If it is even, the parity of the resulting terms is even or

gerade (as in thep2 configuration considered above).

m. Counting States

It is absolutely imperative that the reader keep in mind that in all of this manipulation

(prestidigitation to some) the total number of atomic states has remained the same, conserved.

Another way to say this is that a given atomic configuration has a distinct number of (J, MJ

pairs that never changes no matter how we classify them. Since the determination of the terms

that arise from a given configuration can often become a tedious process it is prone to errors.

It would be beneficial to have a means of quickly checking to make sure that the results are at

least consistent, i. e., that the number of states is always conserved. In particular, when

initially writing down all the possible electron arrangements in a set of orbitals as in the table

in section II B, it would be nice to know before beginning this process how many are expected

so as to avoid missing any. The following sections have as their goal to give the reader the

necessary tool to check for this consistency: the ability to count states.

A. Counting of states for configurations

To count up the number of states deriving from a given configuration, one should

multiply the number of states arising from each subshell. In this regard closed subshells

contribute only one state because there is only one possible arrangement of electrons within the

subshell. Again, we see that closed subshells can be ignored. For partially occupied subshells

the general procedure is shown by example in what follows.

Let us consider the 2p3 subshell. The first electron can be placed in anyone of the 6

possible spin-orbitals. The second electron only has five places it can be placed while the third

and final electron can only be placed in one of four remaining spin-orbitals. This results in 6

x 5 x 4 = 120 possible arrangements for these three electrons. This over counts the number

of states, however, because the three electrons are indistinguishable. Using the same set of
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three spin-orbitals originally assigned to the three electrons, there are 3! ways of labeling them

that are all identical because the electrons are identical. Thus the above result of 120 must be

divided by 3! to account for this. The number of states arising from the 2p3 configuration is

thus (6 x 5 x 4) / 3! = 20.

This general procedure can be used to count the number of possible ways of arranging

the electrons in any partially filled subshell. For example, a 4/2 subshell will give rise to (14

x 13) / 2! = 91 states.

That takes care of determining the total number of states arising from a given subshell.

To obtain the total number of states for a complete configuration, simply multiply the number

of states arising from each partially filled subshell. Thus, the [.. .]4d85s15pl configuration of

palladium that we considered earlier contains [(10 x 9 x 8 x 7 x 6 x 5 x 4 x 3) / 8!] x 2

x 6 = 540 states.

B. Counting of states for terms

A term is specified by (2s+1)L. It corresponds to values of Ms ranging from -S to S

which gives 2S + 1 different values of Ms (which is why the value of 2S + I is called the

multiplicity or spin multiplicity of a term). It also gives rise to values of ML ranging from

-L to L, again, 2L+l altogether. Thus, the number of states deriving from a given term is

simply (2S+1) x (2L+l). When the possible terms arising from a given configuration are

determined, the number of states arising from them had better match the number of states

calculated from the configuration. The number of states hasn't changed, only their

classification.

C. Counting of states for levels

A level is specified by (2S+1)LI. Now, the various possible values of ML and Ms states

can no longer be specified because L and S have been coupled to give a state of definite J. In

this case the number of states deriving from the level is simply specified by the number of

possible values of MI. Since MI can range from -J to J, the number of states deriving from a

given level is 2J + 1.

-".. "~".~
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D. Conservation of the number of states

In the 2pz configuration considered in section n B, it was found that there were 15

distinct entries in the table, corresponding to the 15 distinct states that arise from this

configuration. However, this configuration also yielded the terms IS, 3p, and ID. These terms

should together also give 15 states. This can be tested using the (2S + 1) x (2L + 1) rule.

IS gives I x I = lstate
3p gives 3 x 3 = 9 states
!D gives 1 x 5 = 5 states
Altogether: 15 states, as expected

When considering the possible J values, the IS state has S =0, L=O, so J must be O.

The 3p state has S=I, L=I, so J must fall in the range 11 -11 ~ J ~ 1 + 1, giving J = 0, 1,

or 2. For the ID state S=O and L=2 so J=2 is the only value that can result. For each level

the number of states that arises is 2J + 1. We therefore obtain:

ISO 2J + 1 = 1 state only (as found for the IS term above)
IDz 2J + 1 = 5 states (as found for ID term above)
3pZ 2J + 1 = 5 states
3PI 2J + 1 = 3 states
3po 2J + 1 = 1 state

The new number of states coming from the 3p term is then 5 + 3 + 1 = 9, just as found when

using the (2L+ 1) x (2S+ 1) rule on the 3p term. In addition, the total number of states

generated here based on the 2J + 1 rule is 15, just as it was for the terms, and just as it was for

the configuration. If the states determined in these three ways do not agree, a mistake has

been made somewhere along the line.

IV. Energy ordering of terms and levels

We now come to quite a different problem. In the absence of any laboratory electric or

magnetic field, all the states in a given level are degenerate. If there were no spin-orbit

coupling, all the levels of a given term would be degenerate. If we stretch our imaginations
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even further and explore what would happen in the absence of electron-electron repulsion we

would find that all terms arising from a given configuration would be degenerate as well.

Only the configuration would determine the energy. As we turn on electron-electron

repulsions the terms in a configuration split out to different energies. The question becomes,

how do they split? Which is lowest in energy? Moreover, when spin-orbit coupling is turned

on the levels in a given term from a given configuration again split out to different energy.

How do these split? Though these splittings could be calculated by ab initio means, it would

be found that a pattern develops if one does such a calculation for a large number of

configurations. This pattern can be summarized by a set of rules that were first set forth by

Felix Hund. Because it is easier to carry around a few general rules than a computer, these

rules, Hund's Rules, are reproduced below:

(i) For terms deriving from a given configuration, the term of highest S will lie lowest in

energy.

(ii) For more than one term deriving from a given configuration, all having the highest
possible value of S, the term having the highest L (and S) will lie lowest in energy.

(iii) For terms having a spin-orbit splitting, the states will be ordered with the lowest J
values lying lowest in energy if the subshell responsible for the splitting is less than
half-full; the states will be ordered with the highest J value lying lowest in energy if the
subshell responsible for the splitting is more than half-full.

It should be noted that although we would like to know in what order the terms from a

given configuration lie, Hund' s rules do not tell us. The first two rules only allow us to make

a prediction about which term will be the lowest in energy. They simply state that we should

search for the largest value of S and then, within that subset of terms, search for the highest

value of L. That is then the lowest energy term. These rules make no prediction about the

ordering of the remaining terms whatsoever.

So, for the 2p2 configuration we originally considered in section II B, we can now

predict that the 3p term will be lowest in energy and that the levels will split out in increasing

energy in the order 3pO' 3PI, 3pZ. We can say absolutely nothing about the ordering of the ID

and IS terms arising from this configuration except that they will lie somewhere above the 3p

term.


