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Presentation Outline 

• Background: opportunities and challenges with ejector cooling 
cycles 

• Research motivation: optimize ejector cycle performance under 
changing working conditions/capacities (common in real world 
applications) by adjusting ejector motive nozzle 

• New solution: vortex ejector - utilizing controllable vortex at the 
motive inlet of the ejector to adjust mass flow rate and condenser 
outlet quality/subcooling (vortex nozzle/valve has been 
recognized as a reliable flow modulation method as early as 
1960s (Mayer, 1967; Wormley, 1969)) 

• Research approach:  

− Vortex nozzle tests with refrigerant (R134a)  

− Visualization and modeling of swirling low vapor quality flow 
expanded in the nozzle  

• Conclusions 
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Benefits of Ejector Cooling Cycle 
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𝑷𝒄𝒐𝒎𝒑,𝒊𝒏 > 𝑷𝒆𝒗𝒂𝒑 

𝑷𝒄𝒐𝒎𝒑,𝒊𝒏 ≈ 𝑷𝒆𝒗𝒂𝒑 

Conventional cooling cycle: 

• Throttling in the 
expansion valve causes 
irreversibility 

• Cycle efficiency is 
impaired 

Ejector cooling cycle: 

• Irreversibility in the expansion 
process is reduced  

• Compressor work is saved  

• Cooling capacity is increased 

• Cycle efficiency is improved 

     (R134a ~ 5 %; CO2 ~ 20 %) 



Challenges with Ejector Cooling Cycle 
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• Different working 
conditions/capacities favor 
different ejector geometry 

 

• Slightly different geometry 
might result in significant 
difference in system COP 
under the same conditions 

 

• Ejector motive nozzle throat 
diameter (nozzle 
restrictiveness) is one of the 
key points that can 
significantly affect COP R410A ejector air conditioning system COP with 

different motive nozzles under three different 
conditions                                   Hu et al. (2014)  

Condition 1 Condition 2 Condition 3 

𝑇𝑖𝑛𝑑𝑜𝑜𝑟(dry/wet bulb), 
ºC 

26.7/19.4 26.7/19.4 26.8/19.5 

𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟(dry/wet bulb), 
ºC 

35.0/19.5 30.6/16.8 27.8/14.9 

𝑝𝑐𝑜𝑛𝑑, MPa 2.4 2.0 1.9 

C
O

P
 

Test Conditions 

Sumeru et al. (2012); Sarkar (2012);  

Elbel and Hrnjak (2008); Elbel (2011);  

COP changed by more than 40 % 
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Less 
restrictive 

nozzle 

Restrictiveness of the motive 
nozzle on the two-phase flow can 

significantly affect ejector 
efficiency and system 

performance. 

Room 
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More 
restrictive 

nozzle 

Restrictiveness of the motive 
nozzle on the two-phase flow can 

significantly affect ejector 
efficiency and system 

performance. 

Room 



How to Adjust Motive Nozzle Geometry (Restrictiveness on Flow) 
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Eurofighter Typhoon thrust nozzle 
http://www.military.com/video/aircraft/engines/eurofighter-thrust-vectoring-

nozzle/2907034546001 



Previous Approach: Adjustable Needle 
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This design is complicated and costly, and more friction losses are 

incurred probably because of the additional surface area and 

turbulence introduced. 



New Solution: Vortex Ejector 
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Utilizing an adjustable vortex at 

the motive inlet to control the 

flow expanded in the motive 

nozzle (no change in geometry; 

same effect as changing nozzle 

throat diameter)  

Conventional ejector Vortex ejector 

Vortex ejector cooling cycle 

Adjustable 

Vortex 



Share of Tangential Kinetic Energy in the Available Pressure 
Potential Decreases the Mass Flow Rate 
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Works for both single-phase and two-phase 

Nozzle 
convergent 

part 

Axial velocity profile Tangential velocity profile 

∆𝑝~
1

2
𝜌 𝑉𝑜𝑢𝑡

2 − 𝑉𝑖𝑛
2  

𝑉𝑜𝑢𝑡
2 = 𝑉𝑎𝑥𝑖𝑎𝑙,𝑜𝑢𝑡

2 + 𝑉𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙,𝑜𝑢𝑡
2  

𝑚 ~𝜌𝑉𝑎𝑥𝑖𝑎𝑙,𝑜𝑢𝑡𝐴𝑜𝑢𝑡 

Inlet 
Inlet 

Outlet 
Outlet 



Research Approach 

• Experimental investigation of the influence of motive 
inlet vortex on the flow expanded in the motive nozzle 
with commonly used refrigerant R134a 

• Visualization of the swirling low vapor quality flow 
expanded in the nozzle 

• Explanation and modeling of the influence of motive 
inlet vortex on the flow expanded in the motive nozzle 
(ongoing) 

• Evaluation of the nozzle efficiency with vortex control 
and comparison with other control methods; system 
tests with adjustable vortex ejector under different 
working conditions in the future 
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Vortex Nozzle 
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Axial inlet 

Sleeve (resin) 
Nozzle (resin) 

Tee (brass) 

Tangential inlet 

Convergent-divergent nozzle 
(resin) 

3D printed 
prototype 

Vortex nozzle geometry 

A 

A 

Section A-A 

Nozzle inlet diameter (mm) 15.0 

Nozzle throat diameter (mm) 1.03 

Nozzle outlet diameter (mm) 1.7 

Nozzle convergent part length (mm) 9.9 

Nozzle divergent part length (mm) 40.0 

Tangential inlet inner diameter (mm) 2.0 

Vortex decay distance (mm) 138.0 



Experimental Facility for Investigation of Vortex Influence on Nozzle 
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• Pumped-refrigerant-loop for 
adjustment of nozzle test 
conditions 

• Pressures and temperatures at 
the axial and tangential inlets 
are measured; pressure at the 
nozzle outlet is measured  

• Total mass flow rate and axial 
inlet mass flow rate are 
measured by Coriolis flow 
meters 

• Ratio of tangential inlet mass 
flow rate to total mass flow rate 
is adjusted by two valves 

 

𝑉𝑜𝑟𝑡𝑒𝑥 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
𝑚 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙

𝑚 𝑡𝑜𝑡𝑎𝑙
 



Testing Conditions 
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• Working fluid: R134a 

• Different nozzle inlet pressures are achieved by adjusting the heating 
water temperature and pump speed 

• Nozzle outlet pressure can be adjusted by a valve installed in the 
downstream of the nozzle 

• Flow at the nozzle inlet is subcooled by around 0.5 ºC. No observable 
bubbles at the nozzle inlet (guaranteed by observing through the 
sight glass installed at the nozzle inlet). 

𝑷𝒊𝒏 (kPa) 𝑷𝒐𝒖𝒕 (kPa) 𝑻𝒊𝒏 (ºC) 𝒎 𝒕𝒐𝒕𝒂𝒍 (g/s) Vortex strength (-) 

760~1059 407~909 29~41 6~20 0~1 

Test Matrix 



Effect of Outlet Pressure on Nozzle Mass Flow Rate at Constant Inlet 
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Outlet pressure (kPa) 

Inlet subcooling = 0.5 ºC 

Theoretically 
calculated 
incompressible 
single phase 
liquid mass flow 
rate  

Choked at low outlet pressure 
(decrease in outlet pressure does not increase mass 
flow rate) 

Observations: 
• Flow is choked at low outlet 

pressure 
• Inlet vortex reduces total 

mass flow rate under the 
same inlet and outlet 
conditions (larger 
restrictiveness) 

Nozzle Inlet: 925 kPa 36 ºC  

𝑷𝒊𝒏 = 𝟗𝟐𝟓 𝒌𝑷𝒂 
No vortex 

With max 
vortex 



Preliminary Visualization Results 
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Outlet pressure (kPa) 

Inlet 925 kPa 36 C no vortex

Clear flow in the convergent 
part of the nozzle 

Clear 

Choked flow (very low outlet 
pressure): becomes bubbly 
immediately after the throat 

Outlet pressure close to inlet 
pressure: flow is still clear after 
the throat 

Bubbly Choked flow 

Outlet pressure 
close to inlet 
pressure  



Choked Mass Flow Rate with Different Inlet Vortex Strengths at 
Constant Inlet Pressure 
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Tangential mass flow rate/total mass flow rate 

Inlet 826 kPa 32 ºC

Inlet 925 kPa 36 ºC

Inlet 1034 kPa 40 ºC

Inlet subcooling = 0.5 ºC 

Nozzle restrictiveness 
on the flow is changed 
by vortex; the stronger 
the vortex is, the 
larger the 
restrictiveness is. 

Mass flow rate can be 
reduced by 35 % with 
vortex under the same 
inlet and outlet 
conditions (large 
control range). 



Nozzle Inlet Pressure Can Vary in A Wide Range with Different 
Inlet Vortex Strengths at Constant Total Mass Flow Rate (Choked) 
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Total mass flow rate=13
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Inlet subcooling = 0.5 ºC 

Nozzle restrictiveness 
on the flow is changed 
by vortex; the stronger 
the vortex is, the larger 
the restrictiveness is. 

Mass flow rate ratio 
(vortex strength): 0.2 to 
0.5 
Inlet pressure: 780 kPa 
to 1050 kPa (large 
control range) for total 
mass flow rate = 15 g/s 



Conclusions and Future Work 
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• Nozzle inlet vortex can change nozzle restrictiveness on the two-phase 
flow. The stronger the vortex is, the larger the restrictiveness is. 

• The control range of inlet pressure and mass flow rate is large enough for 
real applications. Mass flow rate can be reduced by 35 % with vortex 
under the same nozzle inlet and outlet conditions.  

• Next step: Compare the efficiency of vortex ejector with other control 
methods to see if it reduces the frictional losses for the same range of 
flow control.  

• Goal: By adjusting the restrictiveness of motive nozzle on the flow 
expanded through it, ejector cycle performance can be optimized for 
different working conditions/capacities and the improvements could be 
more than 40 %. 



Thank you for your attention! 
Any questions? 
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