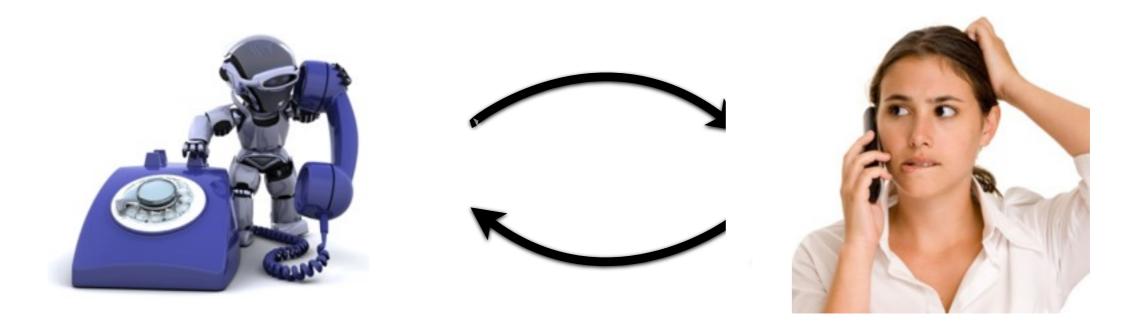


Introduction to Markov Decision Processes

Fall - 2013 Alborz Geramifard Research Scientist at Amazon.com *This work was done during my postdoc at MIT.

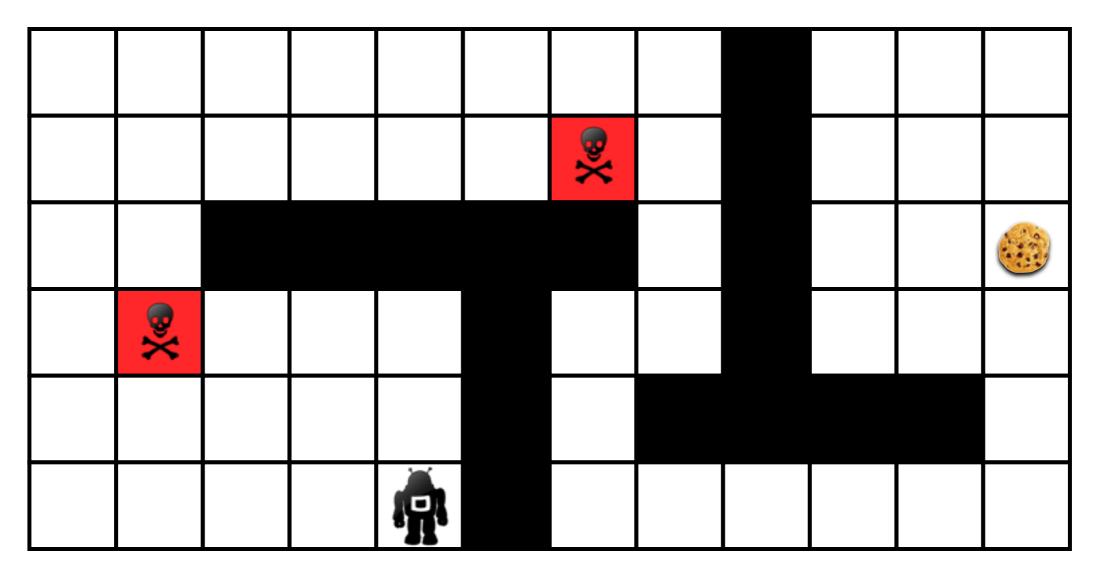
Motivation



Understand the customer's need in a sequence of interactions.
Minimize a notion of accumulated frustration level.

Applications

Grid World Example



Goal: Grab the cookie fast and avoid pits

- Noisy movement
 - Actions: \rightarrow , \leftarrow , \uparrow , \downarrow

Outline

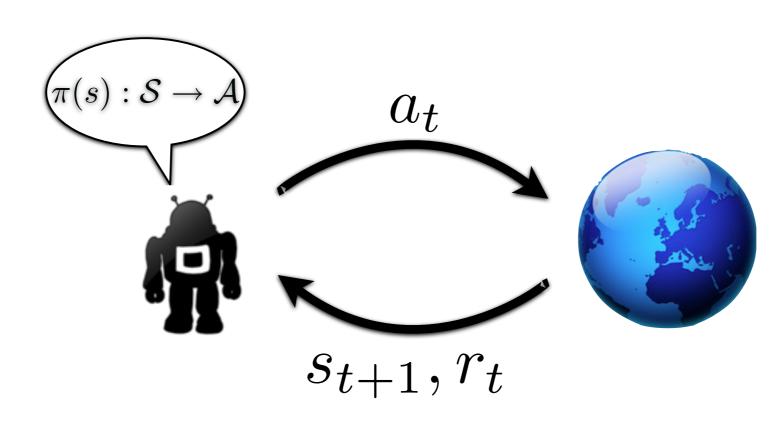
Problem Formulation

Solving MDPs

Extensions

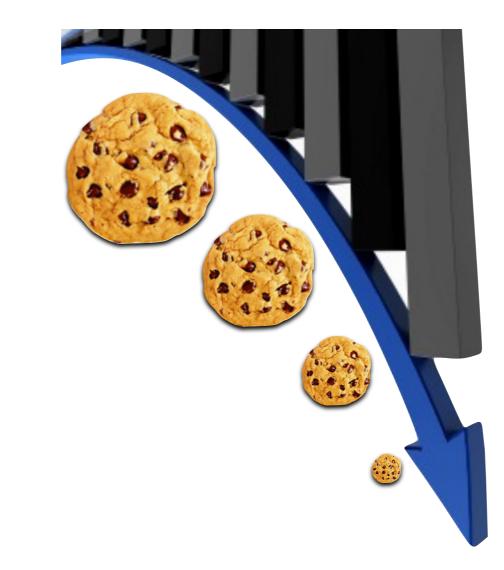
Markov Decision Process

 $(\mathcal{S}, \mathcal{A}, \mathcal{P}^a_{ss'}, \mathcal{R}^a_{ss'}, \gamma)$

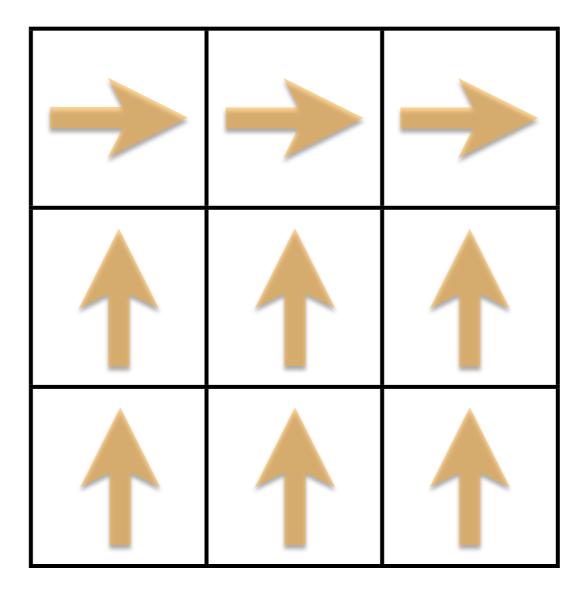


Markov Decision Process

 $(\mathcal{S}, \mathcal{A}, \mathcal{P}^{a}_{ss'}, \mathcal{R}^{a}_{ss'}, \gamma)$

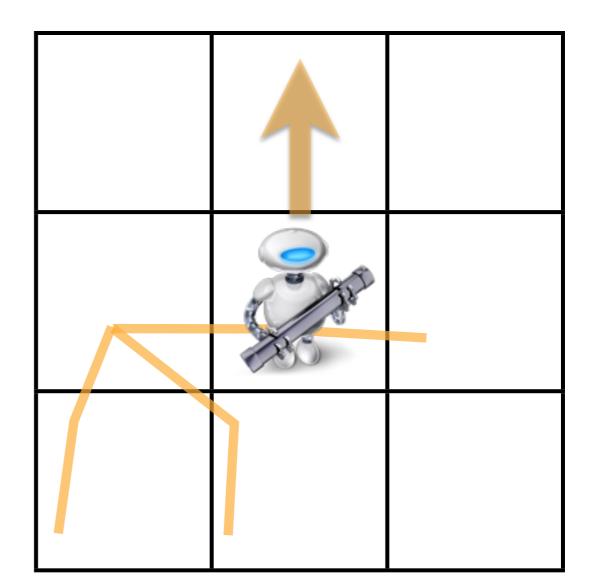


Policy (π) : $S \rightarrow A$

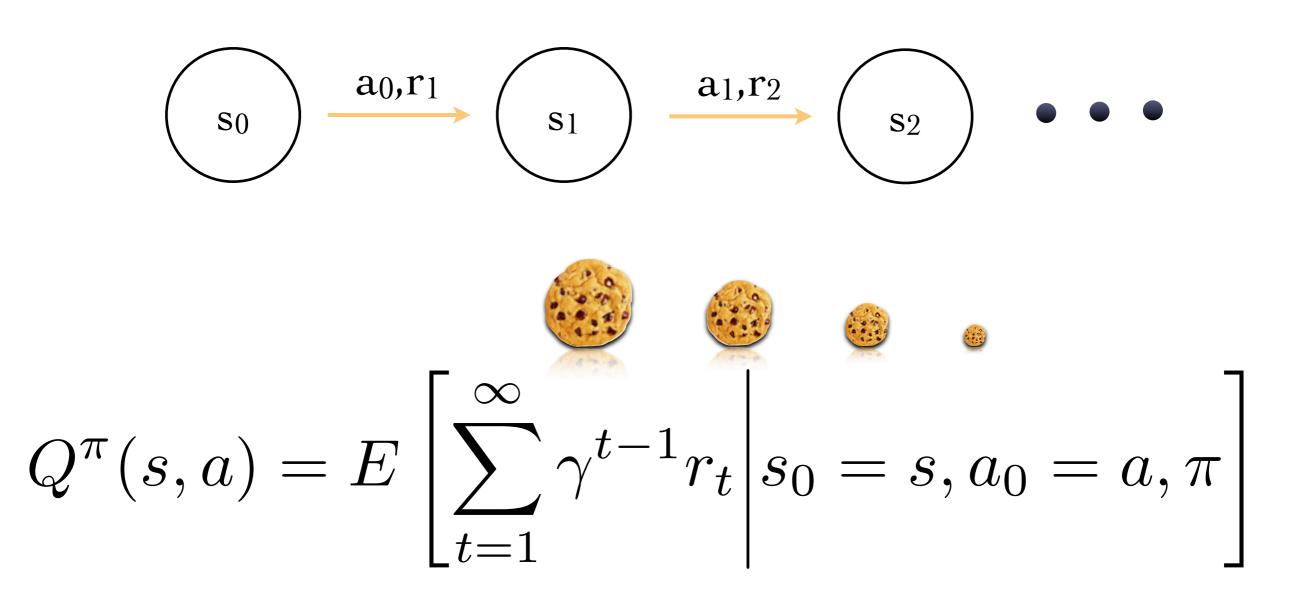


Assumptions

- Fully Observable
- Markovian Property



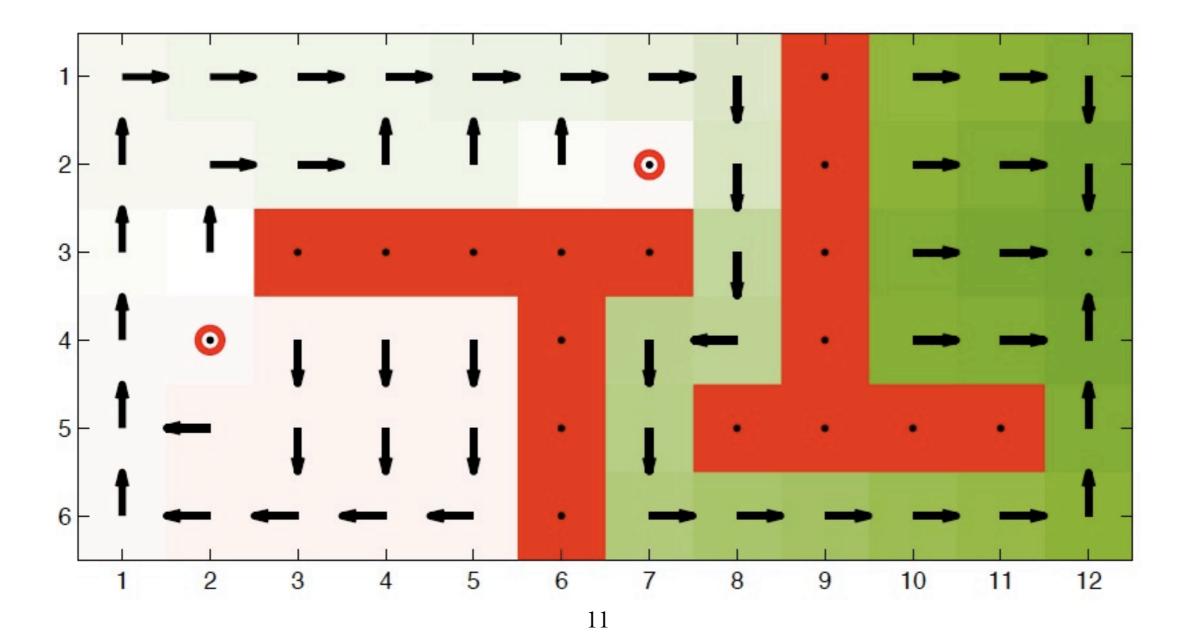
State Values



$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

Problem

 $\pi^* = \max, \forall s \in \mathcal{S}, V^{\pi}(s)$ π



Outline

- Problem Formulation
- Solving MDPs

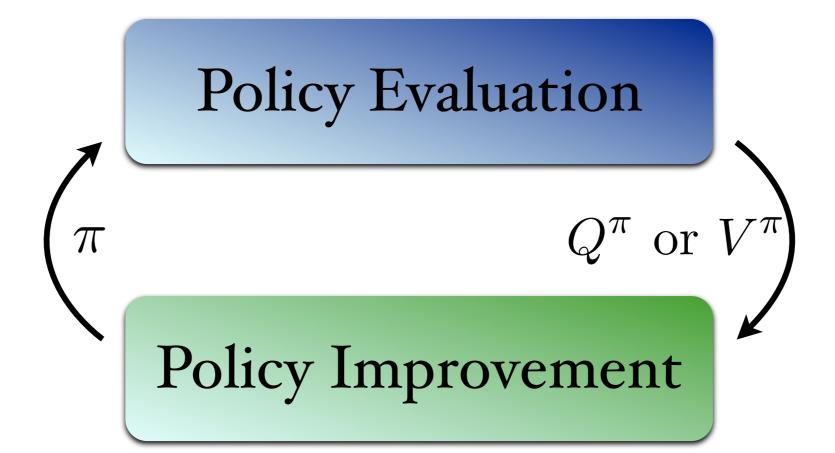
Extensions

 $(\mathcal{S}, \mathcal{A}, \mathcal{P}^a_{ss'}, \mathcal{R}^a_{ss'}, \gamma)$

Assume all elements of the MDP are known.

Dynamic Programming

Given a fixed policy (π) , estimate the value of each state



Given a fixed value function, improve the policy (π)

Loop till convergence

Policy Evaluation

$$Q^{\pi}(s,a) = \sum_{s' \in \mathcal{S}} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma Q^{\pi} \left(s', \pi(s') \right) \right]$$

Solve by formulating as a set of linear equations Costly calculation: $\mathcal{O}(|S|^3)$

Policy Improvement

$$\pi(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q(s, a)$$

Policy Iteration

Policy Evaluation

$$Q(s,a) \leftarrow \sum_{s' \in \mathcal{S}} \mathcal{P}^a_{ss'} [\mathcal{R}^a_{ss'} + \gamma \max_{a'} Q(s',a')]$$

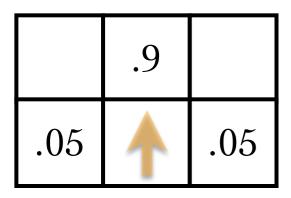
Improve the value of a single state-action pair at a time Lower computation: $\mathcal{O}(|\mathcal{S}|)^*$

Policy Improvement

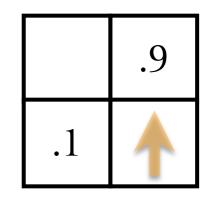
$$\pi(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q(s, a)$$

Value Iteration

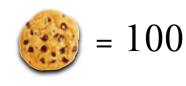
Transition Model

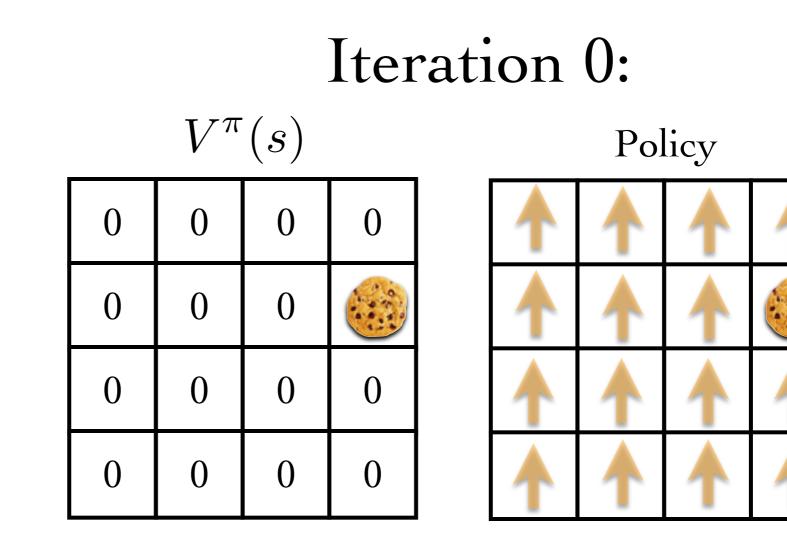


Transition Model

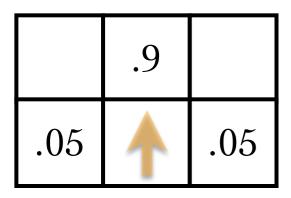


$$\gamma = 1$$

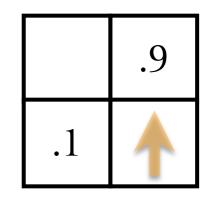




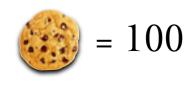
Transition Model

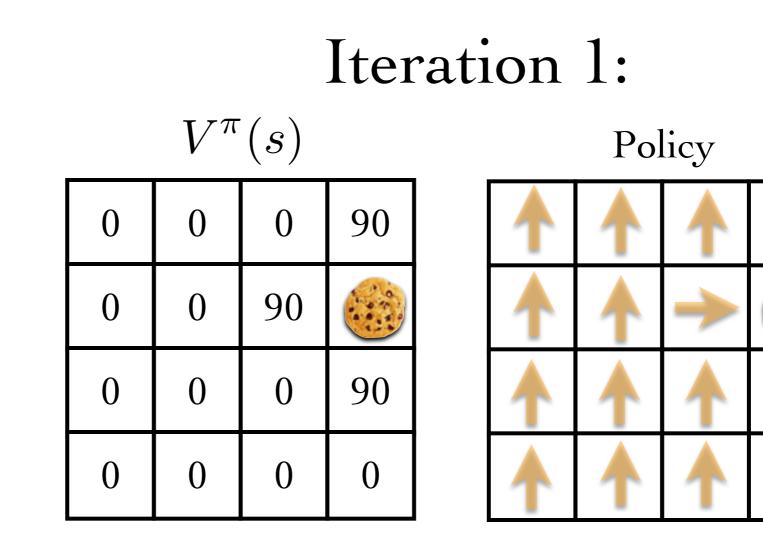


Transition Model

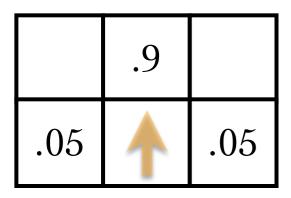


$$\gamma = 1$$

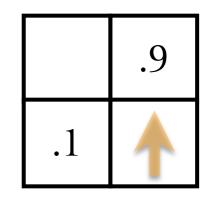




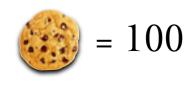
Transition Model

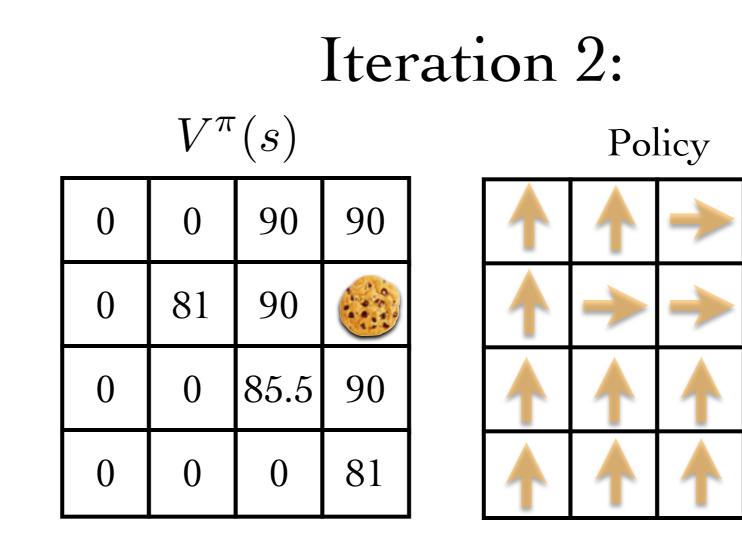


Transition Model

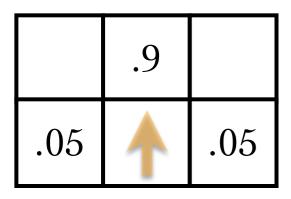


$$\gamma = 1$$

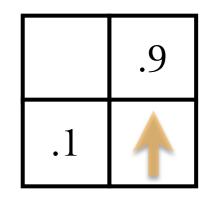




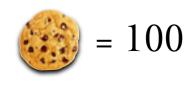
Transition Model

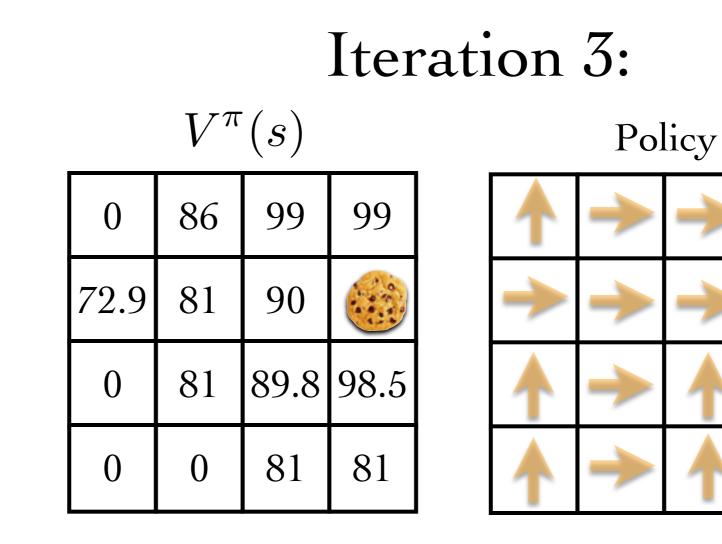


Transition Model



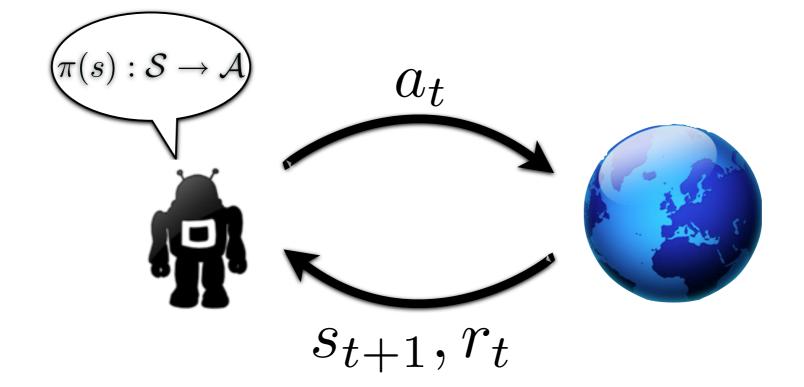
$$\gamma = 1$$





 $(\mathcal{S}, \mathcal{A}, \mathcal{P}^{a}_{ss'}, \mathcal{R}^{a}_{ss'}, \gamma)$ Not known!

Reinforcement Learning



We only see this:

 $s_0, a_0, r_0, s_1, a_1, r_1, s_2 \dots$

Reinforcement Learning

²³ [B.F. Skinner Foundation]

Reinforcement Learning

 $\bigcirc \ \textbf{Unknown} \ \mathcal{P}^a_{ss'}, \mathcal{R}^a_{ss'} \\ \bigotimes \ \textbf{What can we do with only samples}$

 $s_0, a_0, r_0, s_1, a_1, r_1, s_2 \dots$

Policy Evaluation

$$Q(s,a) \leftarrow \left(\sum_{s' \in \mathcal{S}} \mathcal{P}^a_{ss'} [\mathcal{R}^a_{ss'} + \gamma \max_{a'} Q(s',a')]\right)$$
$$Q^+(s,a)$$

Can we build a noisy estimate of $Q^+(s, a)$?

Policy Improvement

$$\pi(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q(s, a)$$

Value Iteration

$$s \xrightarrow{a,r} s' \xrightarrow{a'}$$

$$Q^{+}(s, a) = r_{t} + \gamma \max_{a'} Q(s', a')$$
$$\delta = Q^{+}(s, a) - Q(s, a)$$
$$Q(s, a) = Q(s, a) + \alpha \delta$$

Policy Improvement

Q-Learning

$$\pi^{\epsilon}(s) \triangleq \begin{cases} \operatorname{argmax}_{a} Q^{\pi}(s, a), & \text{with probability } 1 - \epsilon \\ \operatorname{UniformRandom}(\mathcal{A}), & \text{with probability } \epsilon \end{cases}$$

$$s \xrightarrow{a,r} s' \xrightarrow{a'}$$

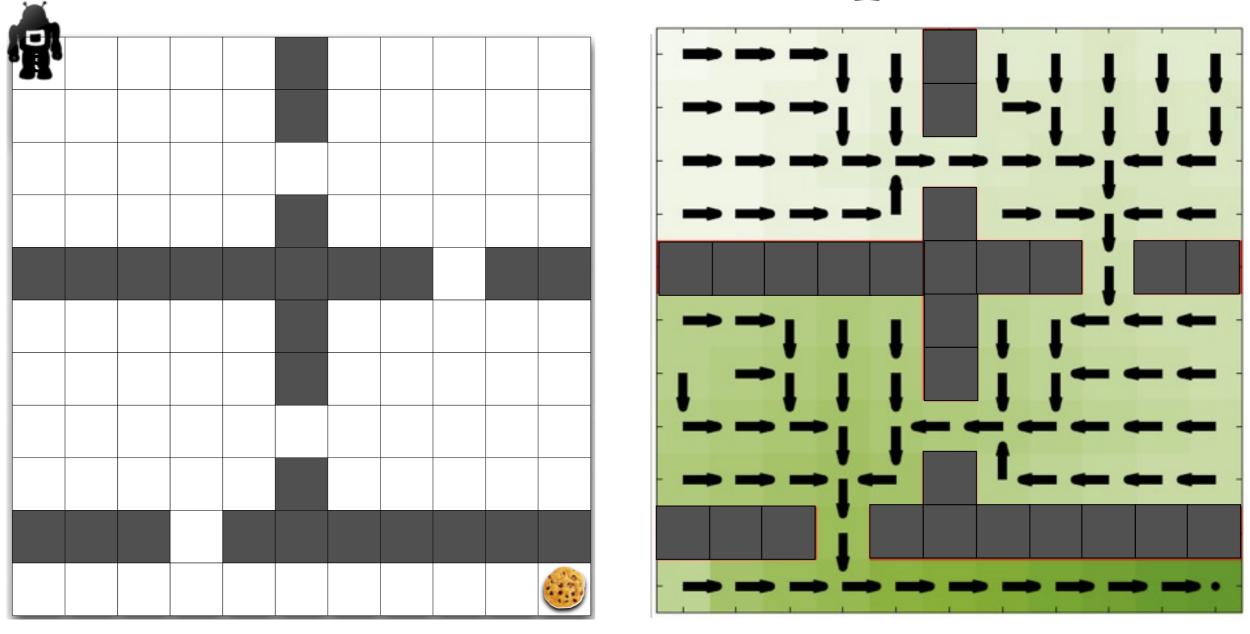
$$Q^{+}(s, a) = r_{t} + \gamma Q(s', a')$$
$$\delta = Q^{+}(s, a) - Q(s, a)$$
$$Q(s, a) = Q(s, a) + \alpha \delta$$

Policy Improvement

SARSA

 $\pi^{\epsilon}(s) \triangleq \begin{cases} \operatorname{argmax}_{a} Q^{\pi}(s, a), & \text{with probability } 1 - \epsilon \\ \operatorname{UniformRandom}(\mathcal{A}), & \text{with probability } \epsilon \end{cases}$

SARSA Example

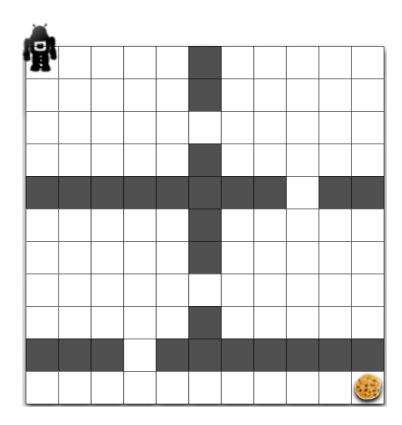


🥑 Rewards: +1 at goal, -.001 per step 🕥 γ=.98



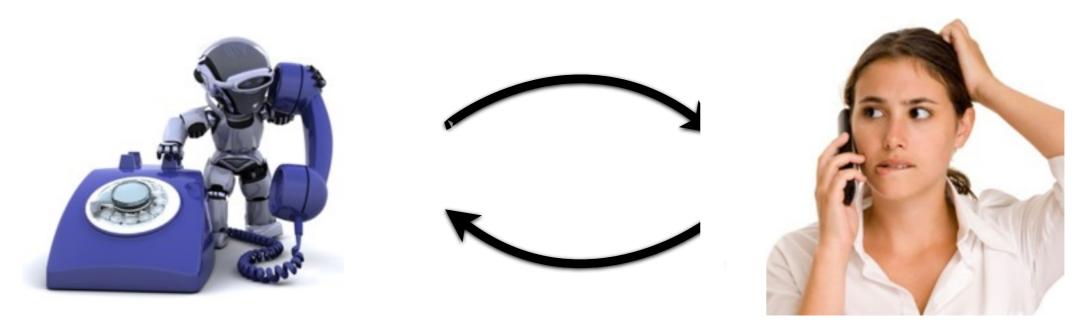
Transitions: $\uparrow\downarrow \leftarrow \rightarrow$, 30% noise

What is the main challenge in solving MDPs with a **tabular** representation of values for every problem?



In practice, state spaces are huge ...

Huge State Spaces



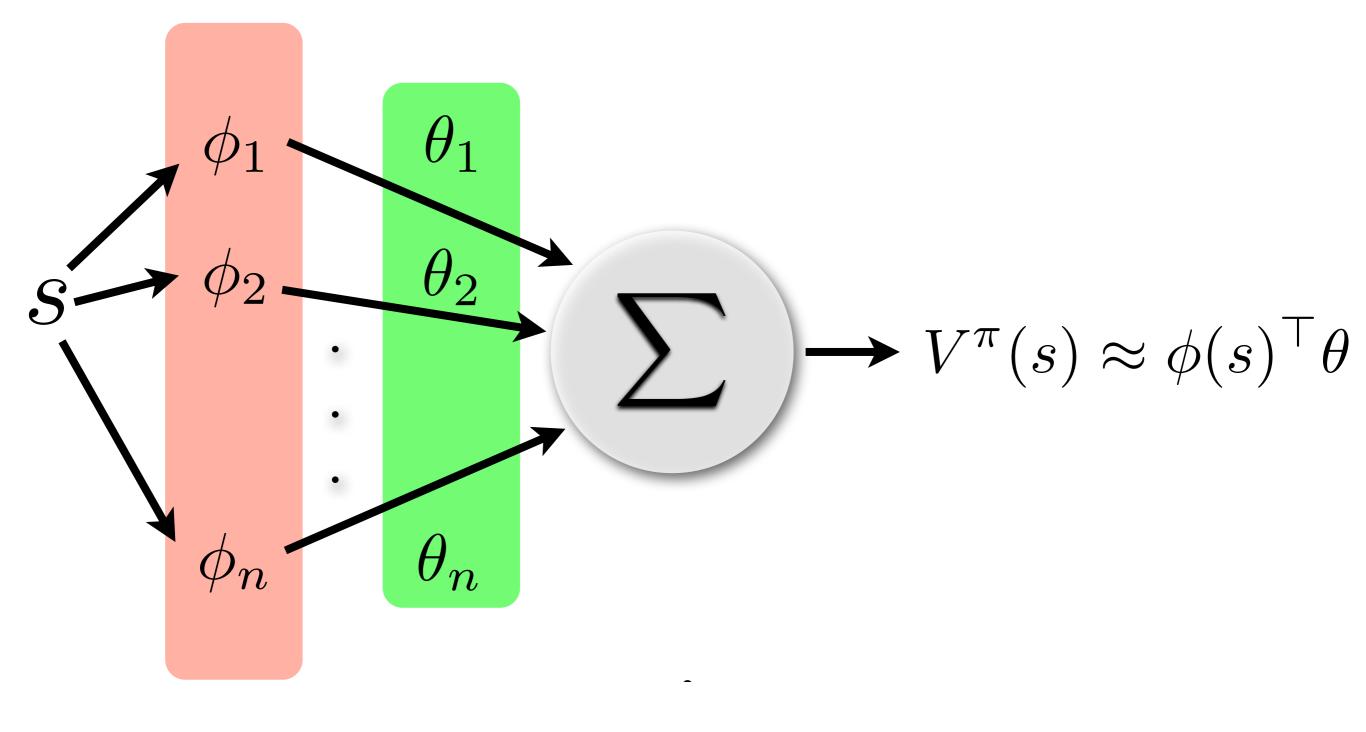
Dialog Turns	7
Frustration Level	10
Possible Sentences	10000
Caller Gender	2
Caller Location	4500

6.3 Billion Parameters

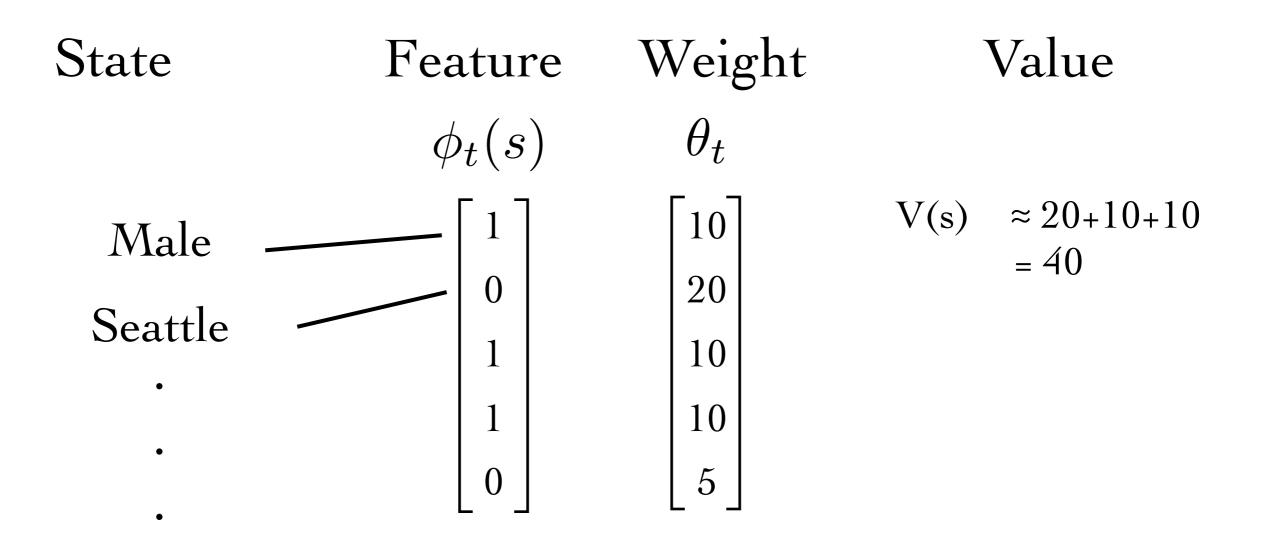
Outline

- Problem Formulation
- Solving MDPs

Linear Function Approximation

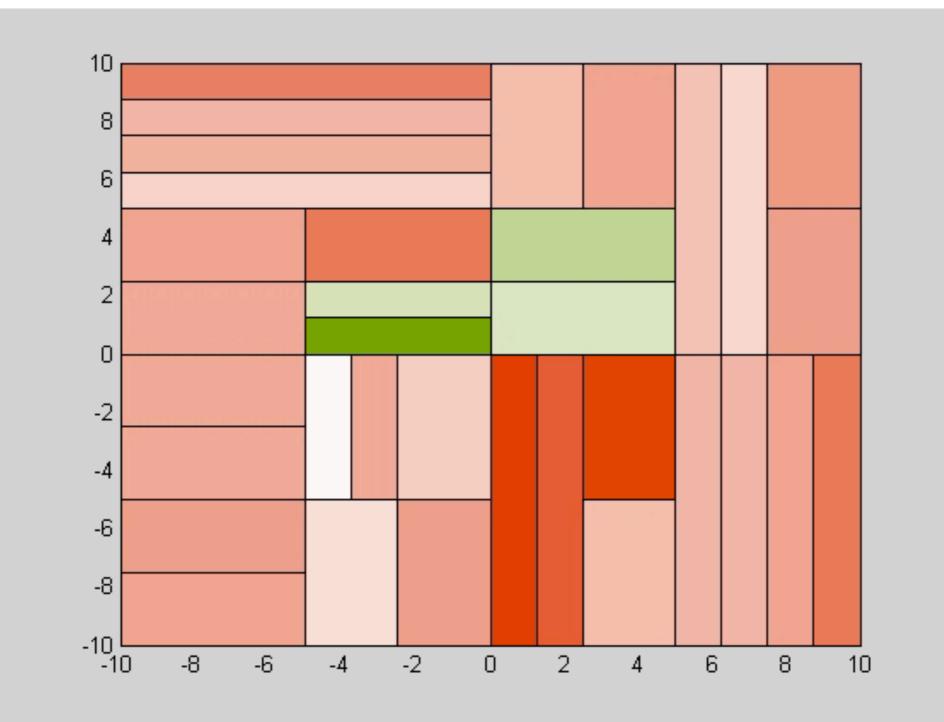


Example

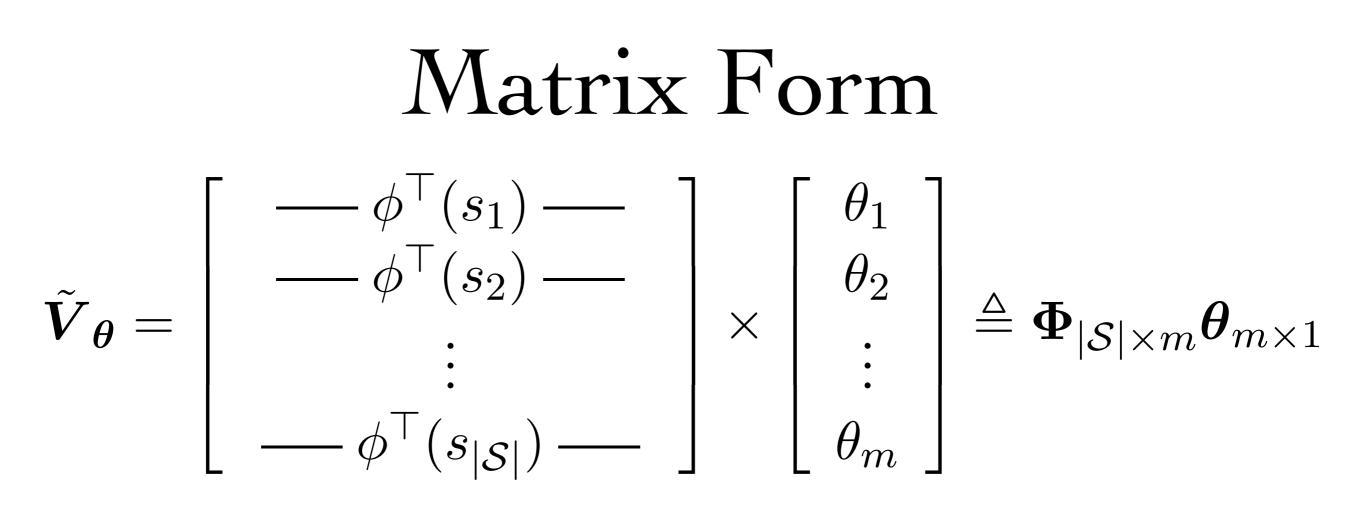


What is the **right** set of features?

Adaptive Tile Coding



[Whiteson et al. 2007]



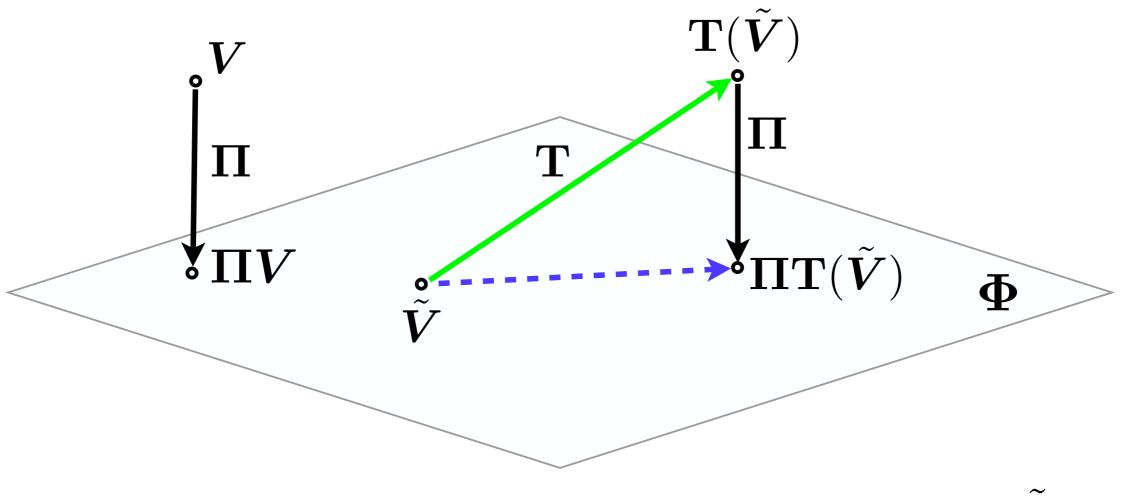
$$Q^{\pi}(s,a) = \sum_{s' \in \mathcal{S}} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma Q^{\pi} \left(s', \pi(s') \right) \right]$$

Solve by formulating as a set of linear equations
Costly calculation:

$$\mathbf{T}(V) \triangleq \mathbf{R} + \gamma \mathbf{P} \mathbf{V}$$

Geometric View

$\Pi = \Phi(\Phi^T D \Phi)^{-1} \Phi^T D$



 $\tilde{\mathbf{V}} = \mathbf{\Phi} \mathbf{\theta}$

$$s \xrightarrow{a,r} s' \xrightarrow{a'}$$

$$Q^{+}(s, a) = r_{t} + \gamma \max_{a'} Q(s', a')$$
$$\delta = Q^{+}(s, a) - Q(s, a)$$
$$Q(s, a) = Q(s, a) + \alpha \delta \phi(s, a)$$

Policy Improvement

Q-Learning

$$\pi^{\epsilon}(s) \triangleq \begin{cases} \operatorname{argmax}_{a} Q^{\pi}(s, a), & \text{with probability } 1 - \epsilon \\ \operatorname{UniformRandom}(\mathcal{A}), & \text{with probability } \epsilon \end{cases}$$

$$s \xrightarrow{a,r} s' \xrightarrow{a'}$$

$$Q^{+}(s, a) = r_{t} + \gamma Q(s', a')$$
$$\delta = Q^{+}(s, a) - Q(s, a)$$
$$Q(s, a) = Q(s, a) + \alpha \delta \phi(s, a)$$

Policy Improvement

SARSA

 $\pi^{\epsilon}(s) \triangleq \begin{cases} \operatorname{argmax}_{a} Q^{\pi}(s, a), & \text{with probability } 1 - \epsilon \\ \operatorname{UniformRandom}(\mathcal{A}), & \text{with probability } \epsilon \end{cases}$