
Introduction to Markov
Decision Processes

Fall - 2013
Alborz Geramifard

Research Scientist at Amazon.com
*This work was done during my postdoc at MIT.

1

Motivation

2

at

st, rt
Understand the customer’s need in a
sequence of interactions.
Minimize a notion of accumulated
frustration level.

Applications

3

4

Grid World Example

Goal: Grab the cookie fast and avoid pits
Noisy movement
Actions: →,←,↑,↓

Motivation

Problem Formulation

Solving MDPs

Extensions

Outline

5

Chapter 2

Background

This chapter reviews the preliminaries of this thesis consisting of Markov Decision Pro-

cesses (MDPs), linear function approximation, model-based MDP solvers, and model-free

MDP solvers. Readers seeking more detail are encouraged to read fundamental text books

on these topics (Bertsekas & Tsitsiklis, 1995; Sutton & Barto, 1998; Buşoniu et al., 2010)

2.1 Markov Decision Processes (MDPs)

A Markov Decision Process (MDP) (Sutton & Barto, 1998) is a tuple defined by

(S,A,Pa
ss� ,Ra

ss� , �) where S is a set of states , A is a set of actions , Pa
ss� is the proba-

bility of getting to state s� by taking action a in state s, Ra
ss� is the corresponding reward,

and � ⇧ [0, 1] is a discount factor that balances current and future rewards . A trajectory

is a sequence s0, a0, r0, s1, a1, r1, s2, . . ., where the action at ⇧ A is chosen according to a

policy ⇥ : S�A ⌅ [0, 1] mapping each state-action pair to a probability. Every consequent

state is sampled according to the transition model (i.e., i ⇥ 0, si+1 ⇤ Pai
si). Notice that for

every state s ⇧ S, ⇥(s, .) forms a probability distribution:

⌃s ⇧ S,
�

a⇥A

⇥(s, a) = 1

31

�(s) : S � A at

st, rtst+1, rt

Markov Decision Process

Background
Reinforcement learning is an approach to sequential deci-
sion making in an unknown environment by learning from
past interactions with that environment (e.g., see Sutton &
Barto 1998). This paper specifically considers the class of
environments known as Markov decision processes (MDPs).
An MDP is a tuple, (S,A,Pa

ss0 ,Ra
ss0 , ⇥), where S is a set of

states, A is a set of actions, Pa
ss0 is the probability of reach-

ing state s0 after taking action a in state s, and Ra
ss0 is the

reward received when that transition occurs, and ⇥ ⌅ [0, 1]
is a discount rate parameter. A trajectory of experience is a
sequence s1, a1, r2, s2, a2, r3, s3, . . ., where the agent in s1

takes action a1 and receives reward r2 while transitioning to
s2 before taking a2, etc.

In this work we focus on the problem of learning an ap-
proximation of a policy’s state-value function from sample
trajectories of experience following that policy. A method
for solving this problem is a key component of many rein-
forcement learning algorithms. In particular, maintaining an
online estimate of the value function can be combined with
policy improvement to learn a controller. The value of a
state given a policy is an expected sum of discounted future
rewards:

V ⇥(s) = E

⇥ 1⌅

t=1

⇥t�1rt

����s0 = s,⌃

⇤
.

We can write the value function recursively as

V ⇥(s) =
⌅

a

⌃(s, a)
⌅

s0

Pa
ss0 [Ra

ss0 + ⇥V ⇥(s0)]

= E [rt+1 + ⇥V ⇥(st+1)|st = s,⌃] . (1)

The recursive relationship involves an implicit expectation
which is made explicit in Equation 1. Notice that trajectories
of experience can be seen as samples of this expectation. For
a particular value function V̂ let the TD error at time t be
defined as,

⇧t(V̂) = rt+1 + ⇥V̂ (st+1)� V̂ (st). (2)

Then, Et [⇧t(V ⇥)] = 0, that is, mean TD error for the policy’s
true value function must be zero.

We are interested in approximating V ⇥ using a linear
value function approximator. In particular, suppose we have
a function ⌥ : S ⇤ ⇧n, which gives a feature representation
of the state space. We are interested in approximate value
functions of the form V̂ (s) = ⌥(s)T ⌅, where ⌅ ⌅ ⇧n are
the parameters of the value function. The focus of this work
is on situations where the feature representation is sparse,
i.e., for all states s the number of non-zero features in ⌥(s)
is no more than k ⇥ n. This situation arises often when
using feature representations such as tile-coding. For exam-
ple, in Stone and colleagues’ work on learning in simulated
soccer (Stone, Sutton, & Kuhlmann 2005), they used over
ten thousand features but the number of non-zero features
for any state was only 416.

Because the policy’s true value function is probably not in
our space of linear functions, we want to find a set of param-
eters that approximates the true function. In other words,

TD
0 s⇥ s0

1 Initialize ⇤ arbitrary
2 repeat
3 Take action according to ⌅ and observe r, s�

4 ⇤ ⇥ ⇤ + �⇧(s)

»
r +

“
⇥⇧(s�)� ⇧(s)

”T
⇤

–

5 end repeat

Algorithm 1: The TD pseudo code.

we want to find a linear value function that has small mean
TD error. The traditional TD algorithm and the more recent
LSTD algorithm both can be viewed as minimizing mean
TD error using sample trajectories of experience.

Temporal Difference Learning
The traditional method for value function approximation is
temporal difference (TD) learning.1 The basic idea of TD is
to adjust a state’s predicted value to reduce the observed TD
error. Given some new experience tuple (st, at, rt+1, st+1),
the update with linear function approximation is,

⌅t+1 = ⌅t + �t⇤t(⌅t), where

⇤t(⌅) = ⌥(st)⇧t(V̂�). (3)

The vector ⇤t(⌅) is like a gradient estimate that specifies how
to change the predicted value of st to reduce the observed
TD error. We will call ⇤t(⌅) the TD update at time t. After
updating the parameter vector, the experience tuple is for-
gotten. Pseudocode is shown in Algorithm 1.

The computational costs of TD for each time step is due
mainly to the vector addition, which is linear in the length of
the vector, i.e., O(n). If only k features are non-zero for any
state, then a sparse vector representation can further reduce
the computation to O(k). So, the algorithm is (sub)-linear
in the number of features, which allows it to be applied even
with very large feature representations.

Least-Squares TD
The Least-Squares TD (LSTD) algorithm (Bradtke & Barto
1996) can be seen as immediately solving for the value func-
tion parameters for which the mean TD update over all the
observed data is zero. Let �t(⌅) be the mean TD update
over the data through time t,

�t(⌅) =
t⌅

i=1

⇤i(⌅)/t. (4)

Let ⌥t = ⌥(st). Applying Equation 3 and 2, and the defini-
tion of our linear value functions, we get,

�t(⌅) =
1
t

t⌅

i=1

⌥t⇧t(V̂�)

1This paper will not consider the use of eligibility traces (e.g.,
see Sutton & Barto 1998) in temporal difference learning. When
referring to TD and LSTD we specifically mean the TD(0) and
LSTD(0) variants.

1 2 3

4 5 6

7 8 9

0.9

0.05 0.05

7

Markov Decision Process

Policy (π): S → A

8

Assumptions

• Fully Observable

• Markovian Property

9

State Values
s0 s1

a0,r1
s2

a1,r2

10

Q�(s, a) = E

⇥ ⇥⌅

t=1

�t�1rt

�����s0 = s, a0 = a,⇥

⇤

V �(s) = Q�(s,�(s))

Problem
�� = max

�
, ⇥s � S, V �(s)

11

Outline

12

Motivation

Problem Formulation

Solving MDPs

Extensions

Chapter 2

Background

This chapter reviews the preliminaries of this thesis consisting of Markov Decision Pro-

cesses (MDPs), linear function approximation, model-based MDP solvers, and model-free

MDP solvers. Readers seeking more detail are encouraged to read fundamental text books

on these topics (Bertsekas & Tsitsiklis, 1995; Sutton & Barto, 1998; Buşoniu et al., 2010)

2.1 Markov Decision Processes (MDPs)

A Markov Decision Process (MDP) (Sutton & Barto, 1998) is a tuple defined by

(S,A,Pa
ss� ,Ra

ss� , �) where S is a set of states , A is a set of actions , Pa
ss� is the proba-

bility of getting to state s� by taking action a in state s, Ra
ss� is the corresponding reward,

and � ⇧ [0, 1] is a discount factor that balances current and future rewards . A trajectory

is a sequence s0, a0, r0, s1, a1, r1, s2, . . ., where the action at ⇧ A is chosen according to a

policy ⇥ : S�A ⌅ [0, 1] mapping each state-action pair to a probability. Every consequent

state is sampled according to the transition model (i.e., i ⇥ 0, si+1 ⇤ Pai
si). Notice that for

every state s ⇧ S, ⇥(s, .) forms a probability distribution:

⌃s ⇧ S,
�

a⇥A

⇥(s, a) = 1

31

Assume all elements of the MDP are known.

Dynamic Programming
2.3. Dynamic Programming 9

Policy Evaluation

Policy Improvement

⇡

Q

�
or V

�

Fig. 2.2 Policy evaluation/improvement loop: The convergent policy is guaranteed to be optimal, if the Q
or V value functions are exact.

namic programming techniques. Finally Section 2.7 shows how reinforce-
ment learning techniques that do not have access to the MDP model can
follow naturally from approximate dynamic programming techniques. These
connections and the broad outline of the algorithm derivations of this tutorial
are illustrated in Figure 2.1.

2.3 Dynamic Programming

Dynamic programming (DP) refers to a class of algorithms that solve com-
plex problems by combining solutions from their subproblems. DP tech-
niques can be used in the planning setting to solve a known MDP by finding
the optimal value function and its corresponding optimal policy [Bellman,
1957, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998]. First, let us
observe that given an MDP, policy evaluation (i.e., finding the value function
under a fixed policy) can be done in closed form. Looking back at the Equa-
tion 2.3, the value function can be derived recursively as explained by Sutton
and Barto [1998]:

V

⇡

(s) = E

⇡

" 1X

t=0

�

t

r

t

����s0 = s

#

= E

⇡

"
r0 +

1X

t=1

�

t

r

t

����s0 = s

#

Given a fixed policy (π), estimate the value of each state

Given a fixed value function, improve the policy (π)

 Loop till convergence

2.3. Dynamic Programming 9

Policy Evaluation

⇡

Q

�
or V

�

Fig. 2.2 Policy evaluation/improvement loop: The convergent policy is guaranteed to be optimal, if the Q
or V value functions are exact.

namic programming techniques. Finally Section 2.7 shows how reinforce-
ment learning techniques that do not have access to the MDP model can
follow naturally from approximate dynamic programming techniques. These
connections and the broad outline of the algorithm derivations of this tutorial
are illustrated in Figure 2.1.

2.3 Dynamic Programming

Dynamic programming (DP) refers to a class of algorithms that solve com-
plex problems by combining solutions from their subproblems. DP tech-
niques can be used in the planning setting to solve a known MDP by finding
the optimal value function and its corresponding optimal policy [Bellman,
1957, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998]. First, let us
observe that given an MDP, policy evaluation (i.e., finding the value function
under a fixed policy) can be done in closed form. Looking back at the Equa-
tion 2.3, the value function can be derived recursively as explained by Sutton
and Barto [1998]:

V

⇡

(s) = E

⇡

" 1X

t=0

�

t

r

t

����s0 = s

#

= E

⇡

"
r0 +

1X

t=1

�

t

r

t

����s0 = s

#

2.6. Approximate Dynamic Programming in Matrix Format 23

written recursively as:

Q

⇡

(s, a) =

X

s

02S
Pa

ss

0
⇥Ra

ss

0 + �Q

⇡

�
s

0
, ⇡(s

0
)

�⇤
. (2.20)

The ⇡ notation will be dropped for the rest of the derivation, as the policy is
assumed to be fixed. Let us now write the above equation in a matrix form to
rederive LSTD. Notice that we overload our notation, such that �, ✓, P , R,d
hold extra information required to calculate Q rather than V :

Q = R + �PQ,

where,

Q|S||A|⇥1 =

2

6666664

Q(s1, a1)

...
Q(s1, a|A|)

...
Q(s|S|, a|A|)

3

7777775
.

The Q vector is approximated by ˜Q = �✓, ✓ 2 Rn, with

�|S||A|⇥n

=

2

6666664

—– �(s1, a1)
> —–

...
—– �(s1, a|A|)> —–

...
—– �(s|S|, a|A|)> —–

3

7777775
, R|S||A|⇥1 =

2

6666664

Ra1
s1
...

Ra|A|
s1

...
Ra|A|

s|S|

3

7777775
,

where �(s, a) can be built from �(s) as described in Section 2.4.4. Similarly
the transition matrix and the reward vector are defined:

P |S||A|⇥|S||A| =

2

64
P (s1, a1, s1, a1), P (s1, a1, s1, a2) · · · P (s1, a1, s|S|, a|A|)

...
. . .

...
P (s|S|, a|A|, s1, a1), P (s|S|, a|A|, s1, a2) · · · P (s|S|, a|A|, s|S|, a|A|)

3

75

Ra

s

=

X

s

02S
Pa

ss

0Ra

ss

0

Solve by formulating as a set of linear equations
Costly calculation:

 Policy Iteration

O(|S|3)

2.3. Dynamic Programming 9

Policy Improvement

⇡

Q

�
or V

�

Fig. 2.2 Policy evaluation/improvement loop: The convergent policy is guaranteed to be optimal, if the Q
or V value functions are exact.

namic programming techniques. Finally Section 2.7 shows how reinforce-
ment learning techniques that do not have access to the MDP model can
follow naturally from approximate dynamic programming techniques. These
connections and the broad outline of the algorithm derivations of this tutorial
are illustrated in Figure 2.1.

2.3 Dynamic Programming

Dynamic programming (DP) refers to a class of algorithms that solve com-
plex problems by combining solutions from their subproblems. DP tech-
niques can be used in the planning setting to solve a known MDP by finding
the optimal value function and its corresponding optimal policy [Bellman,
1957, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998]. First, let us
observe that given an MDP, policy evaluation (i.e., finding the value function
under a fixed policy) can be done in closed form. Looking back at the Equa-
tion 2.3, the value function can be derived recursively as explained by Sutton
and Barto [1998]:

V

⇡

(s) = E

⇡

" 1X

t=0

�

t

r

t

����s0 = s

#

= E

⇡

"
r0 +

1X

t=1

�

t

r

t

����s0 = s

#

2.4. Approximate Dynamic Programming 13

Algorithm 2:Value Iteration Complexity
Input: MDP, ⌘
Output: ⇡

1 V (s) Initialize arbitrarily for s 2 S
2 repeat
3 for s 2 S do
4 v V (s)
5 V (s) maxa2A

P
s02S Pa

ss0 [Ra
ss0 + �V (s0)] O(|A||S|)

6 ⇡(s) argmaxa2A
P

s02S Pa
ss0 [Ra

ss0 + �V (s0)] O(|A||S|)
7 � max(�, |v � V (s)|)
8 until � < ⌘
9 return ⇡

2.4 Approximate Dynamic Programming

With the aim of scalability, we now describe ways to reduce the memory
and computational complexities of the algorithms above. We focus our atten-
tion on MDPs with large yet finite state spaces with small number of actions
(i.e., |A| ⌧ |S|). This assumption is often met in practice. For example in
9 ⇥ 9 Go, |S| = 10

38 and |A| = 81. Hence the rest of Section 2.4 focuses
on eliminating |S| dependent memory sizes and computations (i.e., scaling
obstacles). Looking back at Algorithm 2, there are four scaling problems:

(1) ⇡ stores an action for each state (line 6).
(2) There is a loop over all possible states (line 3).
(3) Both the Bellman update (line 5) and the policy update (line 6) con-

sider all possible next states, which in the worst case can be |S|.
(4) V stores a unique parameter for every state of the MDP (line 5).

2.4.1 Solving Problem 1

The first problem can be solved by storing the policy implicitly through the
use of the Q function. If for each state s, Q(s, a) is available for all actions,
then the greedy policy can be retrieved simply by:

⇡(s) = argmax

a2A
Q(s, a), (2.11)

which is also known as the greedy policy with respect to the value function.
This change will eliminate the need for storing policies explicitly. Note that

2.3. Dynamic Programming 9

Policy Evaluation

⇡

Q

�
or V

�

Fig. 2.2 Policy evaluation/improvement loop: The convergent policy is guaranteed to be optimal, if the Q
or V value functions are exact.

namic programming techniques. Finally Section 2.7 shows how reinforce-
ment learning techniques that do not have access to the MDP model can
follow naturally from approximate dynamic programming techniques. These
connections and the broad outline of the algorithm derivations of this tutorial
are illustrated in Figure 2.1.

2.3 Dynamic Programming

Dynamic programming (DP) refers to a class of algorithms that solve com-
plex problems by combining solutions from their subproblems. DP tech-
niques can be used in the planning setting to solve a known MDP by finding
the optimal value function and its corresponding optimal policy [Bellman,
1957, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998]. First, let us
observe that given an MDP, policy evaluation (i.e., finding the value function
under a fixed policy) can be done in closed form. Looking back at the Equa-
tion 2.3, the value function can be derived recursively as explained by Sutton
and Barto [1998]:

V

⇡

(s) = E

⇡

" 1X

t=0

�

t

r

t

����s0 = s

#

= E

⇡

"
r0 +

1X

t=1

�

t

r

t

����s0 = s

#

 Value Iteration

2.3. Dynamic Programming 9

Policy Improvement

⇡

Q

�
or V

�

Fig. 2.2 Policy evaluation/improvement loop: The convergent policy is guaranteed to be optimal, if the Q
or V value functions are exact.

namic programming techniques. Finally Section 2.7 shows how reinforce-
ment learning techniques that do not have access to the MDP model can
follow naturally from approximate dynamic programming techniques. These
connections and the broad outline of the algorithm derivations of this tutorial
are illustrated in Figure 2.1.

2.3 Dynamic Programming

Dynamic programming (DP) refers to a class of algorithms that solve com-
plex problems by combining solutions from their subproblems. DP tech-
niques can be used in the planning setting to solve a known MDP by finding
the optimal value function and its corresponding optimal policy [Bellman,
1957, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998]. First, let us
observe that given an MDP, policy evaluation (i.e., finding the value function
under a fixed policy) can be done in closed form. Looking back at the Equa-
tion 2.3, the value function can be derived recursively as explained by Sutton
and Barto [1998]:

V

⇡

(s) = E

⇡

" 1X

t=0

�

t

r

t

����s0 = s

#

= E

⇡

"
r0 +

1X

t=1

�

t

r

t

����s0 = s

#

Q(s, a)
X

s02S
Pa
ss0 [Ra

ss0 + �max

a0
Q(s0, a0)]

Improve the value of a single state-action pair at a time
Lower computation: *

2.4. Approximate Dynamic Programming 13

Algorithm 2:Value Iteration Complexity
Input: MDP, ⌘
Output: ⇡

1 V (s) Initialize arbitrarily for s 2 S
2 repeat
3 for s 2 S do
4 v V (s)
5 V (s) maxa2A

P
s02S Pa

ss0 [Ra
ss0 + �V (s0)] O(|A||S|)

6 ⇡(s) argmaxa2A
P

s02S Pa
ss0 [Ra

ss0 + �V (s0)] O(|A||S|)
7 � max(�, |v � V (s)|)
8 until � < ⌘
9 return ⇡

2.4 Approximate Dynamic Programming

With the aim of scalability, we now describe ways to reduce the memory
and computational complexities of the algorithms above. We focus our atten-
tion on MDPs with large yet finite state spaces with small number of actions
(i.e., |A| ⌧ |S|). This assumption is often met in practice. For example in
9 ⇥ 9 Go, |S| = 10

38 and |A| = 81. Hence the rest of Section 2.4 focuses
on eliminating |S| dependent memory sizes and computations (i.e., scaling
obstacles). Looking back at Algorithm 2, there are four scaling problems:

(1) ⇡ stores an action for each state (line 6).
(2) There is a loop over all possible states (line 3).
(3) Both the Bellman update (line 5) and the policy update (line 6) con-

sider all possible next states, which in the worst case can be |S|.
(4) V stores a unique parameter for every state of the MDP (line 5).

2.4.1 Solving Problem 1

The first problem can be solved by storing the policy implicitly through the
use of the Q function. If for each state s, Q(s, a) is available for all actions,
then the greedy policy can be retrieved simply by:

⇡(s) = argmax

a2A
Q(s, a), (2.11)

which is also known as the greedy policy with respect to the value function.
This change will eliminate the need for storing policies explicitly. Note that

O(|S|)

Iteration 0:

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Value Iteration Example

V ⇡(s) Policy

= 100

.9

.05 .05

Transition Model

Reward

� = 1

.9

.1

Transition Model

Iteration 1:

0 0 0 90

0 0 90 0

0 0 0 90

0 0 0 0

Value Iteration Example

V ⇡(s) Policy

= 100

.9

.05 .05

Transition Model

Reward

� = 1

.9

.1

Transition Model

Iteration 2:

0 0 90 90

0 81 90 0

0 0 85.5 90

0 0 0 81

Value Iteration Example

V ⇡(s) Policy

= 100

.9

.05 .05

Transition Model

Reward

� = 1

.9

.1

Transition Model

Iteration 3:

0 86 99 99

72.9 81 90 0

0 81 89.8 98.5

0 0 81 81

Value Iteration Example

V ⇡(s)

= 100

.9

.05 .05

Transition Model

Reward

� = 1

.9

.1

Transition Model

Policy

Chapter 2

Background

This chapter reviews the preliminaries of this thesis consisting of Markov Decision Pro-

cesses (MDPs), linear function approximation, model-based MDP solvers, and model-free

MDP solvers. Readers seeking more detail are encouraged to read fundamental text books

on these topics (Bertsekas & Tsitsiklis, 1995; Sutton & Barto, 1998; Buşoniu et al., 2010)

2.1 Markov Decision Processes (MDPs)

A Markov Decision Process (MDP) (Sutton & Barto, 1998) is a tuple defined by

(S,A,Pa
ss� ,Ra

ss� , �) where S is a set of states , A is a set of actions , Pa
ss� is the proba-

bility of getting to state s� by taking action a in state s, Ra
ss� is the corresponding reward,

and � ⇧ [0, 1] is a discount factor that balances current and future rewards . A trajectory

is a sequence s0, a0, r0, s1, a1, r1, s2, . . ., where the action at ⇧ A is chosen according to a

policy ⇥ : S�A ⌅ [0, 1] mapping each state-action pair to a probability. Every consequent

state is sampled according to the transition model (i.e., i ⇥ 0, si+1 ⇤ Pai
si). Notice that for

every state s ⇧ S, ⇥(s, .) forms a probability distribution:

⌃s ⇧ S,
�

a⇥A

⇥(s, a) = 1

31

Not known!

Reinforcement Learning

fully expanded representation, Sarsa using iFDD provides much
faster learning rates on two classical RL benchmarks namely in-
verted pendulum and BlocksWorld domains, and two cooperative
multi-agent domains where the size of planning space exceeds hun-
dreds of millions. We also compared the results with Sarsa using
the initial features to show that feature dependency discovery was
critical for good performance.

2. TECHNICAL BACKGROUND

Markov Decision Processes.
An MDP [Sutton and Barto, 1998] is a tuple (S,A,Pa

ss⇥ ,Ra
ss⇥ , �)

where S is the set of states, A is a discrete set of actions, Pa
ss⇥ is

the probability of getting to state s⇤ when executing action a from
state s, Ra

ss⇥ is the reward for executing action a in state s, and
� ⌅ [0, 1] is the discount factor that balances current and future
rewards. A trajectory starts from initial state s0 and forms a se-
quence s0, a0, r0, s1, a1, r1, s2.... The action at at time t is chosen
according to a policy ⇧ : S ⇤ A, mapping each state to an ac-
tion. The value of each state-action pair given policy ⇧ is defined
as the expected sum of discounted rewards when the agent starts
from the corresponding state, takes the corresponding action, and
follows policy ⇧ thereafter:

Q�(s, a) = E�

⇥ ⌅⌅

t=0

�t�1rt

����s0 = s, a0 = a,

⇤
. (1)

In discrete spaces, the values Q�(s, a) can be stored in a lookup-
table. The optimal policy, ⇧⇥ maximizes the value function for all
states:

⇧⇥(s) = argmax
a

Q��
(s, a).

Temporal Difference Learning.
The temporal difference (TD) error at time t is defined as the

difference between the current value for the state-action pair and
the estimated Q value based on the observed reward and the value
for the next state-action pair,

⇥t(Q
�) = rt + �Q�(st+1, at+1)�Q�(st, at).

TD methods [Sutton, 1988] use the TD error at each time step as
the gradient for reducing the error in the Q function estimation.

Linear Function Approximation.
A lookup-table representation of the Q function is impractical

when the state space is large, and a common approach is to use a
linear function approximation of the form Q�(s, a) = ⇤T⌃(s, a),
where ⌃ : S⇥A ⇤ ⇧n is the basis function and ⇤ is a weight vec-
tor. We call each output element of the basis function ⌃(s) a feature
; ⌃f (s) = c denotes feature f has value c in state s.1 The repre-
sentation is formed by the space spanned by the linear combination
of basis function of all states and hence named the feature repre-
sentation. Let ⌃t

f (s) indicate the value of feature f corresponding
to the basis function at time t for state s. Given a feature repre-
sentation formed by ⌃, several methods [Sutton and Barto, 1998;
Lagoudakis and Parr, 2003] exist to learn the weight vector ⇤.

Of special interest is the set of basis functions ⌃ where the output
is a binary vector (⌃ : S ⇥A ⇤ {0, 1}n); not only can the corre-
sponding weights ⇤ be computed efficiently [Buro, 1999], but the
1For readability, we will write ⌃(s) instead of ⌃(s, a), but ⌃ always
conditions on the action.

!1

Initial

!2

!3

Discovered

!1!!2!!3

Potential

!2!!3

!1!!2

Figure 1: initial, discovered, and potential features. Potential
features are added to the discovered set once their potential rel-
evance (⌥) reaches the discovery threshold ⌅.

weights also indicate the importance of each binary property [Silver
et al., 2008]. If ⌃ contains a distinct feature for each state-action
pair, then the function approximation reduces to a lookup table that
assigns a value to each state-action pair (equation 1). For the rest
of the paper we assume that all basis functions output binary values
unless specified.

3. APPROACH
The core insight of incremental Feature Dependency Discovery

(iFDD) is to facilitate a smooth process for expanding the rep-
resentaion by gradually incorporating feature dependencies. The
iFDD process consists of three steps: (1) identifying potential fea-
tures (2) tracking their relevances through the accumulated sum of
an error measure, and (3) expanding the representation by including
potential features that their relevance exceeds a certain threshold.
We emphasize that the iFDD algorithm assumes that the initial set
of features provide a reasonable basis: if initial features are selected
in a way such that no planner with the given inputs can perform
well (e.g., continuous variables are discretized lower than the re-
quired resolution), then applying iFDD will not be helpful. Given
an initial basis function ⌃0(s), iFDD considers pairwise conjunc-
tions of active (non-zero) features as potential features.2 Note that
inactive conjunctions cannot affect the value function approxima-
tion. While inspecting disjunctions of features is an alternative,
by definition this approach creates more active features which in-
creases computational complexity. Additionally, we will show that
adding feature conjunctions is sufficient to turn the initial repre-
sentation into a table lookup representation. These new conjunc-
tive features are added to the representation if they would be active
in states where errors in the value function approximation persist:
these are the features which have the most promise to improve the
value function approximation. While the error measure can orig-
inate from any learning method, we use TD error because it is
inexpensive to compute, has been successful [Sutton, 1996], and
has theoretical convergence guarantees when combined with linear
function approximators [Tsitsiklis and Van Roy, 1997].

Figure 1 illustrates the process. Identified as the conjunction of
existing features, each potential feature f (shown as rectangles) has
an associated potential relevance (⌥f). Once this potential rele-
vance reaches a certain threshold ⌅, it will be added to the set of

2For simplicity we address both initial features and feature con-
junctions as features.

22

�(s) : S � A at

st, rtst+1, rt

We only see this:

23

Reinforcement Learning

[B.F. Skinner Foundation]

Unknown
What can we do with only samples?

Chapter 2

Background

This chapter reviews the preliminaries of this thesis consisting of Markov Decision Pro-

cesses (MDPs), linear function approximation, model-based MDP solvers, and model-free

MDP solvers. Readers seeking more detail are encouraged to read fundamental text books

on these topics (Bertsekas & Tsitsiklis, 1995; Sutton & Barto, 1998; Buşoniu et al., 2010)

2.1 Markov Decision Processes (MDPs)

A Markov Decision Process (MDP) (Sutton & Barto, 1998) is a tuple defined by

(S,A,Pa
ss� ,Ra

ss� , �) where S is a set of states , A is a set of actions , Pa
ss� is the proba-

bility of getting to state s� by taking action a in state s, Ra
ss� is the corresponding reward,

and � ⇧ [0, 1] is a discount factor that balances current and future rewards . A trajectory

is a sequence s0, a0, r0, s1, a1, r1, s2, . . ., where the action at ⇧ A is chosen according to a

policy ⇥ : S�A ⌅ [0, 1] mapping each state-action pair to a probability. Every consequent

state is sampled according to the transition model (i.e., i ⇥ 0, si+1 ⇤ Pai
si). Notice that for

every state s ⇧ S, ⇥(s, .) forms a probability distribution:

⌃s ⇧ S,
�

a⇥A

⇥(s, a) = 1

31

fully expanded representation, Sarsa using iFDD provides much
faster learning rates on two classical RL benchmarks namely in-
verted pendulum and BlocksWorld domains, and two cooperative
multi-agent domains where the size of planning space exceeds hun-
dreds of millions. We also compared the results with Sarsa using
the initial features to show that feature dependency discovery was
critical for good performance.

2. TECHNICAL BACKGROUND

Markov Decision Processes.
An MDP [Sutton and Barto, 1998] is a tuple (S,A,Pa

ss⇥ ,Ra
ss⇥ , �)

where S is the set of states, A is a discrete set of actions, Pa
ss⇥ is

the probability of getting to state s⇤ when executing action a from
state s, Ra

ss⇥ is the reward for executing action a in state s, and
� ⌅ [0, 1] is the discount factor that balances current and future
rewards. A trajectory starts from initial state s0 and forms a se-
quence s0, a0, r0, s1, a1, r1, s2.... The action at at time t is chosen
according to a policy ⇧ : S ⇤ A, mapping each state to an ac-
tion. The value of each state-action pair given policy ⇧ is defined
as the expected sum of discounted rewards when the agent starts
from the corresponding state, takes the corresponding action, and
follows policy ⇧ thereafter:

Q�(s, a) = E�

⇥ ⌅⌅

t=0

�t�1rt

����s0 = s, a0 = a,

⇤
. (1)

In discrete spaces, the values Q�(s, a) can be stored in a lookup-
table. The optimal policy, ⇧⇥ maximizes the value function for all
states:

⇧⇥(s) = argmax
a

Q��
(s, a).

Temporal Difference Learning.
The temporal difference (TD) error at time t is defined as the

difference between the current value for the state-action pair and
the estimated Q value based on the observed reward and the value
for the next state-action pair,

⇥t(Q
�) = rt + �Q�(st+1, at+1)�Q�(st, at).

TD methods [Sutton, 1988] use the TD error at each time step as
the gradient for reducing the error in the Q function estimation.

Linear Function Approximation.
A lookup-table representation of the Q function is impractical

when the state space is large, and a common approach is to use a
linear function approximation of the form Q�(s, a) = ⇤T⌃(s, a),
where ⌃ : S⇥A ⇤ ⇧n is the basis function and ⇤ is a weight vec-
tor. We call each output element of the basis function ⌃(s) a feature
; ⌃f (s) = c denotes feature f has value c in state s.1 The repre-
sentation is formed by the space spanned by the linear combination
of basis function of all states and hence named the feature repre-
sentation. Let ⌃t

f (s) indicate the value of feature f corresponding
to the basis function at time t for state s. Given a feature repre-
sentation formed by ⌃, several methods [Sutton and Barto, 1998;
Lagoudakis and Parr, 2003] exist to learn the weight vector ⇤.

Of special interest is the set of basis functions ⌃ where the output
is a binary vector (⌃ : S ⇥A ⇤ {0, 1}n); not only can the corre-
sponding weights ⇤ be computed efficiently [Buro, 1999], but the
1For readability, we will write ⌃(s) instead of ⌃(s, a), but ⌃ always
conditions on the action.

!1

Initial

!2

!3

Discovered

!1!!2!!3

Potential

!2!!3

!1!!2

Figure 1: initial, discovered, and potential features. Potential
features are added to the discovered set once their potential rel-
evance (⌥) reaches the discovery threshold ⌅.

weights also indicate the importance of each binary property [Silver
et al., 2008]. If ⌃ contains a distinct feature for each state-action
pair, then the function approximation reduces to a lookup table that
assigns a value to each state-action pair (equation 1). For the rest
of the paper we assume that all basis functions output binary values
unless specified.

3. APPROACH
The core insight of incremental Feature Dependency Discovery

(iFDD) is to facilitate a smooth process for expanding the rep-
resentaion by gradually incorporating feature dependencies. The
iFDD process consists of three steps: (1) identifying potential fea-
tures (2) tracking their relevances through the accumulated sum of
an error measure, and (3) expanding the representation by including
potential features that their relevance exceeds a certain threshold.
We emphasize that the iFDD algorithm assumes that the initial set
of features provide a reasonable basis: if initial features are selected
in a way such that no planner with the given inputs can perform
well (e.g., continuous variables are discretized lower than the re-
quired resolution), then applying iFDD will not be helpful. Given
an initial basis function ⌃0(s), iFDD considers pairwise conjunc-
tions of active (non-zero) features as potential features.2 Note that
inactive conjunctions cannot affect the value function approxima-
tion. While inspecting disjunctions of features is an alternative,
by definition this approach creates more active features which in-
creases computational complexity. Additionally, we will show that
adding feature conjunctions is sufficient to turn the initial repre-
sentation into a table lookup representation. These new conjunc-
tive features are added to the representation if they would be active
in states where errors in the value function approximation persist:
these are the features which have the most promise to improve the
value function approximation. While the error measure can orig-
inate from any learning method, we use TD error because it is
inexpensive to compute, has been successful [Sutton, 1996], and
has theoretical convergence guarantees when combined with linear
function approximators [Tsitsiklis and Van Roy, 1997].

Figure 1 illustrates the process. Identified as the conjunction of
existing features, each potential feature f (shown as rectangles) has
an associated potential relevance (⌥f). Once this potential rele-
vance reaches a certain threshold ⌅, it will be added to the set of

2For simplicity we address both initial features and feature con-
junctions as features.

Reinforcement Learning

Q+(s, a)

2.3. Dynamic Programming 9

Policy Evaluation

⇡

Q

�
or V

�

Fig. 2.2 Policy evaluation/improvement loop: The convergent policy is guaranteed to be optimal, if the Q
or V value functions are exact.

namic programming techniques. Finally Section 2.7 shows how reinforce-
ment learning techniques that do not have access to the MDP model can
follow naturally from approximate dynamic programming techniques. These
connections and the broad outline of the algorithm derivations of this tutorial
are illustrated in Figure 2.1.

2.3 Dynamic Programming

Dynamic programming (DP) refers to a class of algorithms that solve com-
plex problems by combining solutions from their subproblems. DP tech-
niques can be used in the planning setting to solve a known MDP by finding
the optimal value function and its corresponding optimal policy [Bellman,
1957, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998]. First, let us
observe that given an MDP, policy evaluation (i.e., finding the value function
under a fixed policy) can be done in closed form. Looking back at the Equa-
tion 2.3, the value function can be derived recursively as explained by Sutton
and Barto [1998]:

V

⇡

(s) = E

⇡

" 1X

t=0

�

t

r

t

����s0 = s

#

= E

⇡

"
r0 +

1X

t=1

�

t

r

t

����s0 = s

#

 Value Iteration

Q(s, a)
X

s02S
Pa
ss0 [Ra

ss0 + �max

a0
Q(s0, a0)]

2.3. Dynamic Programming 9

Policy Improvement

⇡

Q

�
or V

�

Fig. 2.2 Policy evaluation/improvement loop: The convergent policy is guaranteed to be optimal, if the Q
or V value functions are exact.

namic programming techniques. Finally Section 2.7 shows how reinforce-
ment learning techniques that do not have access to the MDP model can
follow naturally from approximate dynamic programming techniques. These
connections and the broad outline of the algorithm derivations of this tutorial
are illustrated in Figure 2.1.

2.3 Dynamic Programming

Dynamic programming (DP) refers to a class of algorithms that solve com-
plex problems by combining solutions from their subproblems. DP tech-
niques can be used in the planning setting to solve a known MDP by finding
the optimal value function and its corresponding optimal policy [Bellman,
1957, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998]. First, let us
observe that given an MDP, policy evaluation (i.e., finding the value function
under a fixed policy) can be done in closed form. Looking back at the Equa-
tion 2.3, the value function can be derived recursively as explained by Sutton
and Barto [1998]:

V

⇡

(s) = E

⇡

" 1X

t=0

�

t

r

t

����s0 = s

#

= E

⇡

"
r0 +

1X

t=1

�

t

r

t

����s0 = s

#

2.4. Approximate Dynamic Programming 13

Algorithm 2:Value Iteration Complexity
Input: MDP, ⌘
Output: ⇡

1 V (s) Initialize arbitrarily for s 2 S
2 repeat
3 for s 2 S do
4 v V (s)
5 V (s) maxa2A

P
s02S Pa

ss0 [Ra
ss0 + �V (s0)] O(|A||S|)

6 ⇡(s) argmaxa2A
P

s02S Pa
ss0 [Ra

ss0 + �V (s0)] O(|A||S|)
7 � max(�, |v � V (s)|)
8 until � < ⌘
9 return ⇡

2.4 Approximate Dynamic Programming

With the aim of scalability, we now describe ways to reduce the memory
and computational complexities of the algorithms above. We focus our atten-
tion on MDPs with large yet finite state spaces with small number of actions
(i.e., |A| ⌧ |S|). This assumption is often met in practice. For example in
9 ⇥ 9 Go, |S| = 10

38 and |A| = 81. Hence the rest of Section 2.4 focuses
on eliminating |S| dependent memory sizes and computations (i.e., scaling
obstacles). Looking back at Algorithm 2, there are four scaling problems:

(1) ⇡ stores an action for each state (line 6).
(2) There is a loop over all possible states (line 3).
(3) Both the Bellman update (line 5) and the policy update (line 6) con-

sider all possible next states, which in the worst case can be |S|.
(4) V stores a unique parameter for every state of the MDP (line 5).

2.4.1 Solving Problem 1

The first problem can be solved by storing the policy implicitly through the
use of the Q function. If for each state s, Q(s, a) is available for all actions,
then the greedy policy can be retrieved simply by:

⇡(s) = argmax

a2A
Q(s, a), (2.11)

which is also known as the greedy policy with respect to the value function.
This change will eliminate the need for storing policies explicitly. Note that

Can we build a noisy estimate of ?Q+(s, a)

26

2.3. Dynamic Programming 9

Policy Evaluation

⇡

Q

�
or V

�

Fig. 2.2 Policy evaluation/improvement loop: The convergent policy is guaranteed to be optimal, if the Q
or V value functions are exact.

namic programming techniques. Finally Section 2.7 shows how reinforce-
ment learning techniques that do not have access to the MDP model can
follow naturally from approximate dynamic programming techniques. These
connections and the broad outline of the algorithm derivations of this tutorial
are illustrated in Figure 2.1.

2.3 Dynamic Programming

Dynamic programming (DP) refers to a class of algorithms that solve com-
plex problems by combining solutions from their subproblems. DP tech-
niques can be used in the planning setting to solve a known MDP by finding
the optimal value function and its corresponding optimal policy [Bellman,
1957, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998]. First, let us
observe that given an MDP, policy evaluation (i.e., finding the value function
under a fixed policy) can be done in closed form. Looking back at the Equa-
tion 2.3, the value function can be derived recursively as explained by Sutton
and Barto [1998]:

V

⇡

(s) = E

⇡

" 1X

t=0

�

t

r

t

����s0 = s

#

= E

⇡

"
r0 +

1X

t=1

�

t

r

t

����s0 = s

#

Q(s, a) = Q(s, a) + �⇥

Q+
(s, a) = rt + �max

a0
Q(s0, a0)

� = Q+(s, a)�Q(s, a)

2.3. Dynamic Programming 9

Policy Improvement

⇡

Q

�
or V

�

Fig. 2.2 Policy evaluation/improvement loop: The convergent policy is guaranteed to be optimal, if the Q
or V value functions are exact.

namic programming techniques. Finally Section 2.7 shows how reinforce-
ment learning techniques that do not have access to the MDP model can
follow naturally from approximate dynamic programming techniques. These
connections and the broad outline of the algorithm derivations of this tutorial
are illustrated in Figure 2.1.

2.3 Dynamic Programming

Dynamic programming (DP) refers to a class of algorithms that solve com-
plex problems by combining solutions from their subproblems. DP tech-
niques can be used in the planning setting to solve a known MDP by finding
the optimal value function and its corresponding optimal policy [Bellman,
1957, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998]. First, let us
observe that given an MDP, policy evaluation (i.e., finding the value function
under a fixed policy) can be done in closed form. Looking back at the Equa-
tion 2.3, the value function can be derived recursively as explained by Sutton
and Barto [1998]:

V

⇡

(s) = E

⇡

" 1X

t=0

�

t

r

t

����s0 = s

#

= E

⇡

"
r0 +

1X

t=1

�

t

r

t

����s0 = s

#

14 Dynamic Programming and Reinforcement Learning

switching from V to Q increases the memory requirement for storing the
value function by factor of |A|. Yet, as long as the dependence of the value
function on the state space (problem 4) is removed, this increase is not a major
concern because |A| is assumed to be small.

2.4.2 Solving Problem 2

For MDPs with large state spaces, sweeping through all states and perform-
ing Bellman updates on each one is infeasible. Consequently, more advanced
techniques have been proposed to focus Bellman updates in parts of the
state-space that are more promising [Singh, 1992, Moore and Atkeson, 1993,
Barto et al., 1995, Kuvayev and Sutton, 1996]. In this paper, we focus on
the work of Barto et al. [1995] in which they proposed sampling trajectories
hs0, a0, r0, s1, a1...i based on promising policies while performing Bellman
updates on visited states. The core idea of this trajectory-based sampling is
to execute Bellman updates on states that are visible under good policies. In
practice, a form of exploration is required in producing these trajectories to
ensure all states are visited infinitely often in the limit of infinite samples, so
that Equation 2.6 holds for all states asymptotically. Here, we adopt a simple
but common approach to generate trajectories named ✏-greedy policy, which
selects an action randomly with a small probability ✏ every time, and acts
greedily with respect to the Q function otherwise [Sutton and Barto, 1998]:

⇡

✏

(s) ,
⇢

argmax

a

Q

⇡

(s, a), with probability 1 � ✏

UniformRandom(A), with probability ✏

(2.12)

2.4.3 Solving Problem 3

In most practical problems, there is a locality assumption meaning that given
each state-action pair, the number of reachable next states is much smaller
than the total number of states:

8s 2 S, a 2 A, |{s

0|Pa

ss

0 6= 0}| ⌧ |S|
This assumption naturally alleviates Problem 3. For problems where this as-
sumption does not hold, L1 samples can be used to approximate the expec-
tations on the next state. For example, line 5 of Algorithm 2 can be changed

 Q-Learning

s s’
a,r a’

27

2.3. Dynamic Programming 9

Policy Evaluation

⇡

Q

�
or V

�

Fig. 2.2 Policy evaluation/improvement loop: The convergent policy is guaranteed to be optimal, if the Q
or V value functions are exact.

namic programming techniques. Finally Section 2.7 shows how reinforce-
ment learning techniques that do not have access to the MDP model can
follow naturally from approximate dynamic programming techniques. These
connections and the broad outline of the algorithm derivations of this tutorial
are illustrated in Figure 2.1.

2.3 Dynamic Programming

Dynamic programming (DP) refers to a class of algorithms that solve com-
plex problems by combining solutions from their subproblems. DP tech-
niques can be used in the planning setting to solve a known MDP by finding
the optimal value function and its corresponding optimal policy [Bellman,
1957, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998]. First, let us
observe that given an MDP, policy evaluation (i.e., finding the value function
under a fixed policy) can be done in closed form. Looking back at the Equa-
tion 2.3, the value function can be derived recursively as explained by Sutton
and Barto [1998]:

V

⇡

(s) = E

⇡

" 1X

t=0

�

t

r

t

����s0 = s

#

= E

⇡

"
r0 +

1X

t=1

�

t

r

t

����s0 = s

#

Q(s, a) = Q(s, a) + �⇥

� = Q+(s, a)�Q(s, a)

Q+(s, a) = rt + �Q(s0, a0)

s s’
a,r a’

 SARSA

2.3. Dynamic Programming 9

Policy Improvement

⇡

Q

�
or V

�

Fig. 2.2 Policy evaluation/improvement loop: The convergent policy is guaranteed to be optimal, if the Q
or V value functions are exact.

namic programming techniques. Finally Section 2.7 shows how reinforce-
ment learning techniques that do not have access to the MDP model can
follow naturally from approximate dynamic programming techniques. These
connections and the broad outline of the algorithm derivations of this tutorial
are illustrated in Figure 2.1.

2.3 Dynamic Programming

Dynamic programming (DP) refers to a class of algorithms that solve com-
plex problems by combining solutions from their subproblems. DP tech-
niques can be used in the planning setting to solve a known MDP by finding
the optimal value function and its corresponding optimal policy [Bellman,
1957, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998]. First, let us
observe that given an MDP, policy evaluation (i.e., finding the value function
under a fixed policy) can be done in closed form. Looking back at the Equa-
tion 2.3, the value function can be derived recursively as explained by Sutton
and Barto [1998]:

V

⇡

(s) = E

⇡

" 1X

t=0

�

t

r

t

����s0 = s

#

= E

⇡

"
r0 +

1X

t=1

�

t

r

t

����s0 = s

#

14 Dynamic Programming and Reinforcement Learning

switching from V to Q increases the memory requirement for storing the
value function by factor of |A|. Yet, as long as the dependence of the value
function on the state space (problem 4) is removed, this increase is not a major
concern because |A| is assumed to be small.

2.4.2 Solving Problem 2

For MDPs with large state spaces, sweeping through all states and perform-
ing Bellman updates on each one is infeasible. Consequently, more advanced
techniques have been proposed to focus Bellman updates in parts of the
state-space that are more promising [Singh, 1992, Moore and Atkeson, 1993,
Barto et al., 1995, Kuvayev and Sutton, 1996]. In this paper, we focus on
the work of Barto et al. [1995] in which they proposed sampling trajectories
hs0, a0, r0, s1, a1...i based on promising policies while performing Bellman
updates on visited states. The core idea of this trajectory-based sampling is
to execute Bellman updates on states that are visible under good policies. In
practice, a form of exploration is required in producing these trajectories to
ensure all states are visited infinitely often in the limit of infinite samples, so
that Equation 2.6 holds for all states asymptotically. Here, we adopt a simple
but common approach to generate trajectories named ✏-greedy policy, which
selects an action randomly with a small probability ✏ every time, and acts
greedily with respect to the Q function otherwise [Sutton and Barto, 1998]:

⇡

✏

(s) ,
⇢

argmax

a

Q

⇡

(s, a), with probability 1 � ✏

UniformRandom(A), with probability ✏

(2.12)

2.4.3 Solving Problem 3

In most practical problems, there is a locality assumption meaning that given
each state-action pair, the number of reachable next states is much smaller
than the total number of states:

8s 2 S, a 2 A, |{s

0|Pa

ss

0 6= 0}| ⌧ |S|
This assumption naturally alleviates Problem 3. For problems where this as-
sumption does not hold, L1 samples can be used to approximate the expec-
tations on the next state. For example, line 5 of Algorithm 2 can be changed

SARSA Example

Rewards: +1 at goal, -.001 per step

Transitions: ↑↓←→, 30% noise
28

S

G

γ=.98

|States|=95

29

What is the main challenge in solving
MDPs with a tabular representation of

values for every problem?

|States|=95

In practice, state spaces are huge ...

S

G

6.3 Billion Parameters

1 Huge State Spaces

30

Dialog Turns 7
Frustration Level 10
Possible Sentences 10000
Caller Gender 2
Caller Location 4500

at

st, rt

Motivation

Problem Formulation

Solving MDPs

Extensions

Outline

31

32

1 Linear Function
Approximation

8

.

.

.

�
✓1

✓2

�1

�2

�n ✓n

V ⇡(s) ⇡ ⇥(s)>�
s

Linear Function Approximation

1

0

1

1

0

Example
State

10

20

10

10

5

Feature Weight Value

V(s) ≈ 20+10+10
= 40

33

�t(s) ✓t

What is the right set of features?

.

.

.

Male

Seattle

Adaptive Tile Coding

34
[Whiteson et al. 2007]

35

Matrix Form

2.6. Approximate Dynamic Programming in Matrix Format 21

tional requirements and introduce a new algorithm.
Similar to Equation 2.13,

V (s) = „(s)

€◊.

Note that for ease of readability, we use ◊ to indicate the weight vector for
both action-value functions and state-value functions. The only difference is
that the parameter vector, ◊, will be of dimension m when approximating
state-value functions, and n when approximating action-value functions. De-
fine ˜V ◊ as an approximation of V :

˜V ◊ =

S

WWWWU

—– „

€
(s1) —–

—– „

€
(s2) —–
...

—– „

€
(s|S|) —–

T

XXXXV
◊

S

WWWWU

◊1
◊2
...

◊

m

T

XXXXV
, �|S|◊m

◊
m◊1. (2.15)

For brevity, ˜V will be used instead of ˜V ◊. Often the true value function does
not lie in the space spanned by the basis functions (i.e., column space of �).
Hence to define the best approximate value function in the span of �, we
require a metric. Ideally, we would like to find the solution to the following
minimization problem:

min

◊
||V ≠ ˜V ||2d = min

◊

ÿ

iœ{1,··· ,|S|}

#
V

i

≠ ˜V
i

$2d
i

, (2.16)

where d is a non-negative weight vector specifying the importance of each
state. Intuitively states that are visited more often should have higher weights,
penalizing the error correspondingly. One way to capture this intuition is to
use the steady state probability distribution defined for any fixed policy fi

with transition P under that policy as a vector d1◊|S|, where

dP = d
s.t.

ÿ

i

d
i

= 1,

’i œ {1, · · · , |S|}, d
i

Ø 0,

where d
i

is the i

th element of d indicating the probability of being at state i in
the limit of following the fixed policy. Calculating the steady state distribution
can be challenging, hence Section 2.6.3 will use a more practical weighting
scheme.

2.3. Dynamic Programming 11

V

fi

(s) = E

fi

C Œÿ

t=0
“

t

r

t

----s0 = s

D

= E

fi

C

r0 +

Œÿ

t=1
“

t

r

t

----s0 = s

D

= E

fi

C

Rfi(s)
ss

Õ + “

Œÿ

t=1
“

t≠1
r

t

----s0 = s

D

=

ÿ

s

ÕœS
Pfi(s)

ss

Õ

Ë
Rfi(s)

ss

Õ + “V

fi

(s

Õ
)

È
. (2.6)

Notice the difference between Equations 2.5 and 2.6. The former is the Bell-
man optimality equation, which is independent of the policy, while the latter
is the recursive form of the value function given a fixed policy. Since S is
assumed to be finite, the state values can be calculated by solving |S| linear
equations each specified by writing Equation 2.6 for every state of the MDP.
The solution for a finite state MDP with S = {s1, s2, ..., s|S|} for which the
vector V fi

|S|◊1 represents the value function of the policy fi, can be calcu-
lated in closed form (our notation may exclude the fi superscript for brevity,
yet the policy dependency is always assumed). To write Equation 2.6 in the
matrix form, let matrix P be defined using P

ij

= Pfi(si)
sisj , and let vector R

be defined using R
i

=

q
j

Pfi(si)
sisj Rfi(si)

sisj . Then Equation 2.6 takes the form:

V = R + “P V .

Let us define

T(V) , R + “P V , (2.7)

where T is known as the Bellman operator applied to the value function.
The output of T is a vector with the same size as the input vector (i.e., T :

R|S| æ R|S|). With the help of operator T, we can write Equation 2.6 as
V = T(V). Thus, the problem of evaluating policy fi translates into finding
the fixed-point of operator T. Solving this equation for V , we get:

V = (I ≠ “P)

≠1R, (2.8)

2.6. Approximate Dynamic Programming in Matrix Format 23

written recursively as:

Q

⇡

(s, a) =

X

s

02S
Pa

ss

0
⇥Ra

ss

0 + �Q

⇡

�
s

0
, ⇡(s

0
)

�⇤
. (2.20)

The ⇡ notation will be dropped for the rest of the derivation, as the policy is
assumed to be fixed. Let us now write the above equation in a matrix form to
rederive LSTD. Notice that we overload our notation, such that �, ✓, P , R,d
hold extra information required to calculate Q rather than V :

Q = R + �PQ,

where,

Q|S||A|⇥1 =

2

6666664

Q(s1, a1)

...
Q(s1, a|A|)

...
Q(s|S|, a|A|)

3

7777775
.

The Q vector is approximated by ˜Q = �✓, ✓ 2 Rn, with

�|S||A|⇥n

=

2

6666664

—– �(s1, a1)
> —–

...
—– �(s1, a|A|)> —–

...
—– �(s|S|, a|A|)> —–

3

7777775
, R|S||A|⇥1 =

2

6666664

Ra1
s1
...

Ra|A|
s1

...
Ra|A|

s|S|

3

7777775
,

where �(s, a) can be built from �(s) as described in Section 2.4.4. Similarly
the transition matrix and the reward vector are defined:

P |S||A|⇥|S||A| =

2

64
P (s1, a1, s1, a1), P (s1, a1, s1, a2) · · · P (s1, a1, s|S|, a|A|)

...
. . .

...
P (s|S|, a|A|, s1, a1), P (s|S|, a|A|, s1, a2) · · · P (s|S|, a|A|, s|S|, a|A|)

3

75

Ra

s

=

X

s

02S
Pa

ss

0Ra

ss

0

Solve by formulating as a set of linear equations
Costly calculation:

Geometric View

� = ⇥(⇥TD⇥)�1⇥TD

36

22 Dynamic Programming and Reinforcement Learning

�
Ṽ

�
�

�T(Ṽ)

T(Ṽ)

T

V

�V

Figure 2.3: A geometric interpretation of what Bellman Residual Minimization (solid green)
and Projected Bellman Residual Minimization (dashed blue) minimize [akin to Lagoudakis
and Parr, 2003]. � is the projection operator based on the steady state distribution d, mapping
every point to its orthogonal projection on the span of � shown as a 2D plane. T is the Bellman
operator. The ideal approximation is shown by �V , yet it is impractical since V is not known.

Equation 2.16 defines an unconstrained quadratic optimization problem
that has an analytic solution of the form: :

˜V = �V

� = �(�€D�)

≠1�€D, (2.17)

where D|S|◊|S| is defined as a matrix, with d on its diagonal (D = diag(d)).
Because V is not known, we need some other technique for identifying the
weights that best approximate the value function of a policy. Recall from Sec-
tion 2.3 that we could compute the value function of a policy using dynamic
programming. We can use approximate dynamic programming to compute
the weights (and therefore the approximate value function) of the policy in
the same way. However, this raises a question that is best illustrated geomet-
rically.

Figure 2.3 shows the value function (V) and its projection into the span
of � (shown as the 2D plane), using the orthogonal projection operator, �.
When performing approximate DP to compute ˜V , we use the Bellman oper-
ator (Equation 2.7) to improve our approximation, yet this operator can move
our approximation out of the span of �. Hence the new approximation has
to be projected back to the span of � using �. There are two major metrics
used in the literature to define the best approximated value function: 1) the

Ṽ = �✓

37

2.3. Dynamic Programming 9

Policy Evaluation

⇡

Q

�
or V

�

Fig. 2.2 Policy evaluation/improvement loop: The convergent policy is guaranteed to be optimal, if the Q
or V value functions are exact.

namic programming techniques. Finally Section 2.7 shows how reinforce-
ment learning techniques that do not have access to the MDP model can
follow naturally from approximate dynamic programming techniques. These
connections and the broad outline of the algorithm derivations of this tutorial
are illustrated in Figure 2.1.

2.3 Dynamic Programming

Dynamic programming (DP) refers to a class of algorithms that solve com-
plex problems by combining solutions from their subproblems. DP tech-
niques can be used in the planning setting to solve a known MDP by finding
the optimal value function and its corresponding optimal policy [Bellman,
1957, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998]. First, let us
observe that given an MDP, policy evaluation (i.e., finding the value function
under a fixed policy) can be done in closed form. Looking back at the Equa-
tion 2.3, the value function can be derived recursively as explained by Sutton
and Barto [1998]:

V

⇡

(s) = E

⇡

" 1X

t=0

�

t

r

t

����s0 = s

#

= E

⇡

"
r0 +

1X

t=1

�

t

r

t

����s0 = s

#

Q(s, a) = Q(s, a) + �⇥

Q+
(s, a) = rt + �max

a0
Q(s0, a0)

� = Q+(s, a)�Q(s, a)

2.3. Dynamic Programming 9

Policy Improvement

⇡

Q

�
or V

�

Fig. 2.2 Policy evaluation/improvement loop: The convergent policy is guaranteed to be optimal, if the Q
or V value functions are exact.

namic programming techniques. Finally Section 2.7 shows how reinforce-
ment learning techniques that do not have access to the MDP model can
follow naturally from approximate dynamic programming techniques. These
connections and the broad outline of the algorithm derivations of this tutorial
are illustrated in Figure 2.1.

2.3 Dynamic Programming

Dynamic programming (DP) refers to a class of algorithms that solve com-
plex problems by combining solutions from their subproblems. DP tech-
niques can be used in the planning setting to solve a known MDP by finding
the optimal value function and its corresponding optimal policy [Bellman,
1957, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998]. First, let us
observe that given an MDP, policy evaluation (i.e., finding the value function
under a fixed policy) can be done in closed form. Looking back at the Equa-
tion 2.3, the value function can be derived recursively as explained by Sutton
and Barto [1998]:

V

⇡

(s) = E

⇡

" 1X

t=0

�

t

r

t

����s0 = s

#

= E

⇡

"
r0 +

1X

t=1

�

t

r

t

����s0 = s

#

14 Dynamic Programming and Reinforcement Learning

switching from V to Q increases the memory requirement for storing the
value function by factor of |A|. Yet, as long as the dependence of the value
function on the state space (problem 4) is removed, this increase is not a major
concern because |A| is assumed to be small.

2.4.2 Solving Problem 2

For MDPs with large state spaces, sweeping through all states and perform-
ing Bellman updates on each one is infeasible. Consequently, more advanced
techniques have been proposed to focus Bellman updates in parts of the
state-space that are more promising [Singh, 1992, Moore and Atkeson, 1993,
Barto et al., 1995, Kuvayev and Sutton, 1996]. In this paper, we focus on
the work of Barto et al. [1995] in which they proposed sampling trajectories
hs0, a0, r0, s1, a1...i based on promising policies while performing Bellman
updates on visited states. The core idea of this trajectory-based sampling is
to execute Bellman updates on states that are visible under good policies. In
practice, a form of exploration is required in producing these trajectories to
ensure all states are visited infinitely often in the limit of infinite samples, so
that Equation 2.6 holds for all states asymptotically. Here, we adopt a simple
but common approach to generate trajectories named ✏-greedy policy, which
selects an action randomly with a small probability ✏ every time, and acts
greedily with respect to the Q function otherwise [Sutton and Barto, 1998]:

⇡

✏

(s) ,
⇢

argmax

a

Q

⇡

(s, a), with probability 1 � ✏

UniformRandom(A), with probability ✏

(2.12)

2.4.3 Solving Problem 3

In most practical problems, there is a locality assumption meaning that given
each state-action pair, the number of reachable next states is much smaller
than the total number of states:

8s 2 S, a 2 A, |{s

0|Pa

ss

0 6= 0}| ⌧ |S|
This assumption naturally alleviates Problem 3. For problems where this as-
sumption does not hold, L1 samples can be used to approximate the expec-
tations on the next state. For example, line 5 of Algorithm 2 can be changed

 Q-Learning

s s’
a,r a’

�(s, a)

38

2.3. Dynamic Programming 9

Policy Evaluation

⇡

Q

�
or V

�

Fig. 2.2 Policy evaluation/improvement loop: The convergent policy is guaranteed to be optimal, if the Q
or V value functions are exact.

namic programming techniques. Finally Section 2.7 shows how reinforce-
ment learning techniques that do not have access to the MDP model can
follow naturally from approximate dynamic programming techniques. These
connections and the broad outline of the algorithm derivations of this tutorial
are illustrated in Figure 2.1.

2.3 Dynamic Programming

Dynamic programming (DP) refers to a class of algorithms that solve com-
plex problems by combining solutions from their subproblems. DP tech-
niques can be used in the planning setting to solve a known MDP by finding
the optimal value function and its corresponding optimal policy [Bellman,
1957, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998]. First, let us
observe that given an MDP, policy evaluation (i.e., finding the value function
under a fixed policy) can be done in closed form. Looking back at the Equa-
tion 2.3, the value function can be derived recursively as explained by Sutton
and Barto [1998]:

V

⇡

(s) = E

⇡

" 1X

t=0

�

t

r

t

����s0 = s

#

= E

⇡

"
r0 +

1X

t=1

�

t

r

t

����s0 = s

#

Q(s, a) = Q(s, a) + �⇥

� = Q+(s, a)�Q(s, a)

Q+(s, a) = rt + �Q(s0, a0)

s s’
a,r a’

 SARSA

2.3. Dynamic Programming 9

Policy Improvement

⇡

Q

�
or V

�

Fig. 2.2 Policy evaluation/improvement loop: The convergent policy is guaranteed to be optimal, if the Q
or V value functions are exact.

namic programming techniques. Finally Section 2.7 shows how reinforce-
ment learning techniques that do not have access to the MDP model can
follow naturally from approximate dynamic programming techniques. These
connections and the broad outline of the algorithm derivations of this tutorial
are illustrated in Figure 2.1.

2.3 Dynamic Programming

Dynamic programming (DP) refers to a class of algorithms that solve com-
plex problems by combining solutions from their subproblems. DP tech-
niques can be used in the planning setting to solve a known MDP by finding
the optimal value function and its corresponding optimal policy [Bellman,
1957, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998]. First, let us
observe that given an MDP, policy evaluation (i.e., finding the value function
under a fixed policy) can be done in closed form. Looking back at the Equa-
tion 2.3, the value function can be derived recursively as explained by Sutton
and Barto [1998]:

V

⇡

(s) = E

⇡

" 1X

t=0

�

t

r

t

����s0 = s

#

= E

⇡

"
r0 +

1X

t=1

�

t

r

t

����s0 = s

#

14 Dynamic Programming and Reinforcement Learning

switching from V to Q increases the memory requirement for storing the
value function by factor of |A|. Yet, as long as the dependence of the value
function on the state space (problem 4) is removed, this increase is not a major
concern because |A| is assumed to be small.

2.4.2 Solving Problem 2

For MDPs with large state spaces, sweeping through all states and perform-
ing Bellman updates on each one is infeasible. Consequently, more advanced
techniques have been proposed to focus Bellman updates in parts of the
state-space that are more promising [Singh, 1992, Moore and Atkeson, 1993,
Barto et al., 1995, Kuvayev and Sutton, 1996]. In this paper, we focus on
the work of Barto et al. [1995] in which they proposed sampling trajectories
hs0, a0, r0, s1, a1...i based on promising policies while performing Bellman
updates on visited states. The core idea of this trajectory-based sampling is
to execute Bellman updates on states that are visible under good policies. In
practice, a form of exploration is required in producing these trajectories to
ensure all states are visited infinitely often in the limit of infinite samples, so
that Equation 2.6 holds for all states asymptotically. Here, we adopt a simple
but common approach to generate trajectories named ✏-greedy policy, which
selects an action randomly with a small probability ✏ every time, and acts
greedily with respect to the Q function otherwise [Sutton and Barto, 1998]:

⇡

✏

(s) ,
⇢

argmax

a

Q

⇡

(s, a), with probability 1 � ✏

UniformRandom(A), with probability ✏

(2.12)

2.4.3 Solving Problem 3

In most practical problems, there is a locality assumption meaning that given
each state-action pair, the number of reachable next states is much smaller
than the total number of states:

8s 2 S, a 2 A, |{s

0|Pa

ss

0 6= 0}| ⌧ |S|
This assumption naturally alleviates Problem 3. For problems where this as-
sumption does not hold, L1 samples can be used to approximate the expec-
tations on the next state. For example, line 5 of Algorithm 2 can be changed

�(s, a)

