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3C H A P T E R

Steady-State Conduction—
Multiple Dimensions

3-1 INTRODUCTION
In Chapter 2 steady-state heat transfer was calculated in systems in which the temperature
gradient and area could be expressed in terms of one space coordinate. We now wish to
analyze the more general case of two-dimensional heat flow. For steady state with no heat
generation, the Laplace equation applies.

∂2T

∂x2
+ ∂2T

∂y2
= 0 [3-1]

assuming constant thermal conductivity. The solution to this equation may be obtained by
analytical, numerical, or graphical techniques.

The objective of any heat-transfer analysis is usually to predict heat flow or the tem-
perature that results from a certain heat flow. The solution to Equation (3-1) will give the
temperature in a two-dimensional body as a function of the two independent space coor-
dinates x and y. Then the heat flow in the x and y directions may be calculated from the
Fourier equations

qx = −k Ax
∂T

∂x
[3-2]

qy = −k Ay
∂T

∂y
[3-3]

These heat-flow quantities are directed either in the x direction or in the y direction. The
total heat flow at any point in the material is the resultant of the qx and qy at that point.
Thus the total heat-flow vector is directed so that it is perpendicular to the lines of constant
temperature in the material, as shown in Figure 3-1. So if the temperature distribution in
the material is known, we may easily establish the heat flow.

3-2 MATHEMATICAL ANALYSIS OF
TWO-DIMENSIONAL HEAT CONDUCTION

We first consider an analytical approach to a two-dimensional problem and then indicate the
numerical and graphical methods which may be used to advantage in many other problems.
It is worthwhile to mention here that analytical solutions are not always possible to obtain;
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72 3-2 Mathematical Analysis of Two-Dimensional Heat Conduction

Figure 3-1 Sketch showing the heat flow
in two dimensions.

qy = �kAy

qx = �kAx

∂T
∂y

∂T
∂x

q =
q x

+
q y

Isotherm

indeed, in many instances they are very cumbersome and difficult to use. In these cases
numerical techniques are frequently used to advantage. For a more extensive treatment of
the analytical methods used in conduction problems, the reader may consult References 1, 2,
10, and 11.

Consider the rectangular plate shown in Figure 3-2. Three sides of the plate are main-
tained at the constant temperature T1, and the upper side has some temperature distribution
impressed upon it. This distribution could be simply a constant temperature or something
more complex, such as a sine-wave distribution. We shall consider both cases.

To solve Equation (3-1), the separation-of-variables method is used. The essential
point of this method is that the solution to the differential equation is assumed to take a
product form

T = XY where X = X (x)

Y = Y (y)
[3-4]

The boundary conditions are then applied to determine the form of the functions X and Y.
The basic assumption as given by Equation (3-4) can be justified only if it is possible to
find a solution of this form that satisfies the boundary conditions.

Figure 3-2 Isotherms and heat flow lines in a
rectangular plate.
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First consider the boundary conditions with a sine-wave temperature distribution
impressed on the upper edge of the plate. Thus

T = T1 at y = 0

T = T1 at x = 0

T = T1 at x = W [3-5]

T = Tm sin
(πx

W

)
+ T1 at y = H

where Tm is the amplitude of the sine function. Substituting Equation (3-4) in (3-1) gives

− 1

X

d2 X

dx2
= 1

Y

d2Y

dy2
[3-6]

Observe that each side of Equation (3-6) is independent of the other because x and y are
independent variables. This requires that each side be equal to some constant. We may thus
obtain two ordinary differential equations in terms of this constant,

d2 X

dx2
+ λ2 X = 0 [3-7]

d2Y

dy2
− λ2Y = 0 [3-8]

where λ2 is called the separation constant. Its value must be determined from the boundary
conditions. Note that the form of the solution to Equations (3-7) and (3-8) will depend on
the sign of λ2; a different form would also result if λ2 were zero. The only way that the
correct form can be determined is through an application of the boundary conditions of
the problem. So we shall first write down all possible solutions and then see which one fits
the problem under consideration.

For λ2 = 0: X = C1 + C2x

Y = C3 + C4 y [3-9]
T = (C1 + C2x)(C3 + C4 y)

This function cannot fit the sine-function boundary condition, so that the λ2 = 0 solution
may be excluded.

For λ2 < 0: X = C5e−λx + C6eλx

Y = C7 cos λy + C8 sin λy [3-10]
T = (C5e−λx + C6eλx )(C7 cos λy + C8 sin λy)

Again, the sine-function boundary condition cannot be satisfied, so this solution is excluded
also.

For λ2 > 0: X = C9 cos λx + C10 sin λx

Y = C11e−λy + C12eλy [3-11]
T = (C9 cos λx + C10 sin λx)(C11e−λy + C12eλy)

Now, it is possible to satisfy the sine-function boundary condition; so we shall attempt to
satisfy the other conditions. The algebra is somewhat easier to handle when the substitution

θ = T − T1
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is made. The differential equation and the solution then retain the same form in the new
variable θ , and we need only transform the boundary conditions. Thus

θ = 0 at y = 0

θ = 0 at x = 0
[3-12]

θ = 0 at x = W

θ = Tm sin
πx

W
at y = H

Applying these conditions, we have

0 = (C9 cos λx + C10 sin λx)(C11 + C12) [a]

0 = C9(C11e−λy + C12eλy) [b]

0 = (C9 cos λW + C10 sin λW )(C11e−λy + C12eλy) [c]

Tm sin
πx

W
= (C9 cos λx + C10 sin λx)(C11e−λH + C12eλH ) [d]

Accordingly,

C11 = −C12

C9 = 0

and from (c),

0 = C10C12 sin λW (eλy − e−λy)

This requires that

sin λW = 0 [3-13]

Recall that λ was an undetermined separation constant. Several values will satisfy Equation
(3-13), and these may be written

λ = nπ

W
[3-14]

where n is an integer. The solution to the differential equation may thus be written as a sum
of the solutions for each value of n. This is an infinite sum, so that the final solution is the
infinite series

θ = T − T1 =
∞∑

n=1

Cn sin
nπx

W
sinh

nπy

W
[3-15]

where the constants have been combined and the exponential terms converted to the hyper-
bolic function. The final boundary condition may now be applied:

Tm sin
πx

W
=

∞∑
n=1

Cn sin
nπx

W
sinh

nπ H

W

which requires that Cn = 0 for n > 1. The final solution is therefore

T = Tm
sinh(πy/W )

sinh(π H/W )
sin

(πx

W

)
+ T1 [3-16]

The temperature field for this problem is shown in Figure 3-2. Note that the heat-flow lines
are perpendicular to the isotherms.
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We now consider the set of boundary conditions

T = T1 at y = 0

T = T1 at x = 0

T = T1 at x = W

T = T2 at y = H

Using the first three boundary conditions, we obtain the solution in the form of Equation
(3-15):

T − T1 =
∞∑

n=1

Cn sin
nπx

W
sinh

nπy

W
[3-17]

Applying the fourth boundary condition gives

T2 − T1 =
∞∑

n=1

Cn sin
nπx

W
sinh

nπ H

W
[3-18]

This is a Fourier sine series, and the values of the Cn may be determined by expanding the
constant temperature difference T2 − T1 in a Fourier series over the interval 0 < x < W .
This series is

T2 − T1 = (T2 − T1)
2

π

∞∑
n=1

(−1)n+1 + 1

n
sin

nπx

W
[3-19]

Upon comparison of Equation (3-18) with Equation (3-19), we find that

Cn = 2

π
(T2 − T1)

1

sinh(nπ H/W )

(−1)n+1 + 1

n

and the final solution is expressed as

T − T1

T2 − T1
= 2

π

∞∑
n=1

(−1)n+1 + 1

n
sin

nπx

W

sinh(nπy/W )

sinh(nπ H/W )
[3-20]

An extensive study of analytical techniques used in conduction heat transfer requires
a background in the theory of orthogonal functions. Fourier series are one example of
orthogonal functions, as are Bessel functions and other special functions applicable to
different geometries and boundary conditions. The interested reader may consult one or
more of the conduction heat-transfer texts listed in the references for further information
on the subject.

3-3 GRAPHICAL ANALYSIS
Consider the two-dimensional system shown in Figure 3-3. The inside surface is maintained
at some temperature T1, and the outer surface is maintained at T2. We wish to calculate the
heat transfer. Isotherms and heat-flow lines have been sketched to aid in this calculation.
The isotherms and heat-flow lines form groupings of curvilinear figures like that shown
in Figure 3-3b. The heat flow across this curvilinear section is given by Fourier’s law,
assuming unit depth of material:

q = −k 	x(1)
	T

	y
[3-21]
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Figure 3-3 Sketch showing element used for curvilinear-
square analysis of two-dimensional heat flow.

(a)

(b)

∆y

∆x∆T

q

q

This heat flow will be the same through each section within this heat-flow lane, and the
total heat flow will be the sum of the heat flows through all the lanes. If the sketch is drawn
so that 	x ∼= 	y, the heat flow is proportional to the 	T across the element and, since
this heat flow is constant, the 	T across each element must be the same within the same
heat-flow lane. Thus the 	T across an element is given by

	T = 	Toverall

N

where N is the number of temperature increments between the inner and outer surfaces.
Furthermore, the heat flow through each lane is the same since it is independent of the dimen-
sions 	x and 	y when they are constructed equal. Thus we write for the total heat transfer

q = M

N
k 	Toverall = M

N
k(T2 − T1) [3-22]

where M is the number of heat-flow lanes. So, to calculate the heat transfer, we need only
construct these curvilinear-square plots and count the number of temperature increments
and heat-flow lanes. Care must be taken to construct the plot so that 	x ≈ 	y and
the lines are perpendicular. For the corner section shown in Figure 3-3a the number of
temperature increments between the inner and outer surfaces is about N = 4, while the
number of heat-flow lanes for the corner section may be estimated as M = 8.2. The total
number of heat-flow lanes is four times this value, or 4 × 8.2 = 32.8. The ratio M/N is thus
32.8/4 = 8.2 for the whole wall section. This ratio will be called the conduction shape
factor in subsequent discussions.

The accuracy of this method is dependent entirely on the skill of the person sketching
the curvilinear squares. Even a crude sketch, however, can frequently help to give fairly
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good estimates of the temperatures that will occur in a body. An electrical analogy may be
employed to sketch the curvilinear squares, as discussed in Section 3-9.

The graphical method presented here is mainly of historical interest to show the relation
of heat-flow lanes and isotherms. It may not be expected to be used for the solution of many
practical problems.

3-4 THE CONDUCTION SHAPE FACTOR
In a two-dimensional system where only two temperature limits are involved, we may define
a conduction shape factor S such that

q = kS 	Toverall [3-23]

The values of S have been worked out for several geometries and are summarized in
Table 3-1. A very comprehensive summary of shape factors for a large variety of geometries
is given by Rohsenow [15] and Hahne and Grigull [17]. Note that the inverse hyperbolic
cosine can be calculated from

cosh−1 x = ln
(
x ±

√
x2 − 1

)
For a three-dimensional wall, as in a furnace, separate shape factors are used to calculate

the heat flow through the edge and corner sections, with the dimensions shown in Figure 3-4.
When all the interior dimensions are greater than one fifth of the wall thickness,

Swall = A

L
Sedge = 0.54D Scorner = 0.15L

where

A = area of wall

L = wall thickness

D = length of edge

Note that the shape factor per unit depth is given by the ratio M/N when the curvilinear-
squares method is used for calculations.

Figure 3-4 Sketch illustrating dimensions for use in calculating
three-dimensional shape factors.

D

D L
L



P1: GFZ

chapter-03 7925D-Holman August 17, 2001 12:46

78 3-4 The Conduction Shape Factor

Table 3-1 Conduction shape factors, summarized from references 6 and 7.
Note: For buried objects the temperature difference is ∆T = Tobject − T far field. The far-field temperature
is taken the same as the isothermal surface temperature for semi-infinite media.

Physical system Schematic Shape factor Restrictions

Isothermal cylinder of radius r
buried in semi-infinite
medium having isothermal
surface

D

r

L

Isothermal 2π L

cosh−1(D/r )
2π L

ln(D/r )

L 
 r

L 
 r
D > 3r

Isothermal sphere of radius
r buried in infinite medium

r

4πr

Isothermal sphere of radius r
buried in semi-infinite
medium having isothermal
surface 	T = Tsurf − Tfar field D

r

Isothermal 4πr
1 − r/2D

Conduction between two
isothermal cylinders of
length L buried in infinite
medium

D

r1 r2
2π L

cosh−1

(
D 2 − r 2

1 − r 2
2

2r1r2

) L 
 r
L 
 D

Row of horizontal cylinders
of length L in semi-infinite
medium with isothermal
surface

Isothermal

D

r

l

S = 2π L

ln
[(

l
πr

)
sinh(2π D/ l )

] D > 2r

Buried cube in infinite
medium, L on a side

L

8.24L
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Table 3-1 (Continued ).

Physical system Schematic Shape factor Restrictions

Isothermal cylinder
of radius r placed in
semi-infinite medium
as shown

2r

L

Isothermal 2π L
ln(2L/r )

L 
 2r

Isothermal rectangular
parallelepiped buried
in semi-infinite medium
having isothermal surface b

c

a
L

Isothermal
1.685L

[
log

(
1 + b

a

)]−0.59 (
b
c

)−0.078 See Reference 7

Plane wall

L

A

A
L

One-dimensional heat flow

Hollow cylinder, length L

+

ri

ro

2π L
ln(ro/ri )

L 
 r

Hollow sphere

+

ri

ro

4πrori

ro − ri

Thin horizontal disk buried
in semi-infinite medium
with isothermal surface

Isothermal
2r D

4r
8r

4πr

π/2 − tan−1(r/2D)

D = 0
D 
 2r
D/2r > 1
tan−1(r/2D) in radians

Hemisphere buried in
semi-infinite medium
	T = Tsphere − Tfar field

+
r

Isothermal 2πr

Isothermal sphere buried in
semi-infinite medium with
insulated surface +

r

D

T∞

Insulated 4πr
1 + r/2D

Two isothermal spheres
buried in infinite medium

+ +

r1 r2

D

4πr2

r2

r1

[
1 − (r1/D)4

1 − (r2/D)2

]
− 2r2

D

D > 5rmax
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Table 3-1 (Continued ).

Physical system Schematic Shape factor Restrictions

Thin rectangular plate of
length L, buried in semi-
infinite medium having
isothermal surface

D

W

Isothermal

L

πW
ln(4W/L)

2πW
ln(4W/L)

2πW
ln(2π D/L)

D = 0

W > L

D 
 W

W > L

W 
 L

D > 2W

Parallel disks buried in
infinite medium

D

t1 t2
r

4πr[π

2
− tan−1(r/D)

] D > 5r
tan−1(r/D)
in radians

Eccentric cylinders of length L

D

r1

r2

+ +

2π L

cosh−1

(
r 2

1 + r 2
2 − D 2

2r1r2

) L 
 r2

Cylinder centered in a square
of length L

W

+W
r

L

2π L
ln(0.54W/r )

L 
 W

Horizontal cylinder of length L
centered in infinite plate

D

Isothermal

Isothermal

+
r

D

2π L
ln(4D/r )

Thin horizontal disk buried
in semi-infinite medium with
adiabatic surface
	T = Tdisk − Tfar field

D

Insulated

2r

4πr

π/2 + tan−1(r/2D)

D/2r > 1
tan−1(r/2D)
in radians
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Buried Pipe EXAMPLE 3-1

A horizontal pipe 15 cm in diameter and 4 m long is buried in the earth at a depth of 20 cm.
The pipe-wall temperature is 75◦C, and the earth surface temperature is 5◦C. Assuming
that the thermal conductivity of the earth is 0.8 W/m·◦C, calculate the heat lost by the pipe.

� Solution
We may calculate the shape factor for this situation using the equation given in Table 3-1.
Since D < 3r ,

S = 2π L

cosh−1(D/r )
= 2π (4)

cosh−1(20/7.5)
= 15.35 m

The heat flow is calculated from

q = kS	T = (0.8)(15.35)(75 − 5) = 859.6 W [2933 Btu/h]

Cubical Furnace EXAMPLE 3-2

A small cubical furnace 50 by 50 by 50 cm on the inside is constructed of fireclay brick
[k = 1.04 W/m · ◦C] with a wall thickness of 10 cm. The inside of the furnace is maintained
at 500◦C, and the outside is maintained at 50◦C. Calculate the heat lost through the walls.

� Solution
We compute the total shape factor by adding the shape factors for the walls, edges,
and corners:

Walls: S = A
L

= (0.5)(0.5)
0.1

= 2.5 m

Edges: S = 0.54D = (0.54)(0.5) = 0.27 m

Corners: S = 0.15L = (0.15)(0.1) = 0.015 m

There are six wall sections, twelve edges, and eight corners, so that the total shape
factor is

S = (6)(2.5) + (12)(0.27) + (8)(0.015) = 18.36 m

and the heat flow is calculated as

q = kS	T = (1.04)(18.36)(500 − 50) = 8.592 kW [29,320 Btu/h]

Buried Disk EXAMPLE 3-3

A disk having a diameter of 30 cm and maintained at a temperature of 95◦C is buried at a
depth of 1.0 m in a semi-infinite medium having an isothermal surface temperature of 20◦C
and a thermal conductivity of 2.1 W/m · ◦C. Calculate the heat lost by the disk.

� Solution
This is an application of the conduction shape factor relation q = kS	T . Consulting
Table 3-1 we find a choice of three relations for S for the geometry of a disk buried
in a semi-infinite medium with an isothermal surface. Clearly, D = 0 and D is not large
compared to 2r , so the relation we select for the shape factor is for the case D/2r > 1.0:

S = 4πr

[π/2 − tan−1(r/2D)]
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Note that this relation differs from the one for an insulated surface by the minus sign in
the denominator. Inserting r = 0.15 m and D = 1.0 m we obtain

S = 4π (0.15)

[π/2 − tan−1(0.15/2)]
= 4π (0.15)

[π/2 − 0.07486]
= 1.26 m

For buried objects the shape factor is based on 	T = Tobject − Tfar field. The far-field tem-
perature is taken as the isothermal surface temperature, and the heat lost by the disk is
therefore

q = kS	T = (2.1)(1.26)(95 − 20) = 198.45 W

EXAMPLE 3-4 Buried Parallel Disks

Two parallel 50-cm-diameter disks are separated by a distance of 1.5 m in an infinite medium
having k = 2.3 W/m·◦C. One disk is maintained at 80◦C and the other at 20◦C. Calculate
the heat transfer between the disks.

� Solution
This is a shape-factor problem and the heat transfer may be calculated from

q = kS	T

where S is obtained from Table 3-1 as

S = 4πr

[π/2 − tan−1(r/D)]
for D > 5r

With r = 0.25 m and D = 1.5 m we obtain

S = 4π (0.25)

[π/2 − tan−1(0.25/1.5)]
= 4π (0.25)

[π/2 − 0.1651]
= 2.235

and

q = kS	T = (2.3)(2.235)(80 − 20) = 308.4 W

Figure 3-5 Sketch
illustrating nomenclature used
in two-dimensional numerical
analysis of heat conduction.

m, n

m, n − 1

m, n + 1

m + 1, nm − 1, n
∆y

∆y

∆x ∆x

3-5 NUMERICAL METHOD OF ANALYSIS
An immense number of analytical solutions for conduction heat-transfer problems have
been accumulated in the literature over the past 100 years. Even so, in many practical
situations the geometry or boundary conditions are such that an analytical solution has not
been obtained at all, or if the solution has been developed, it involves such a complex series
solution that numerical evaluation becomes exceedingly difficult. For such situations the
most fruitful approach to the problem is one based on finite-difference techniques, the basic
principles of which we shall outline in this section.

Consider a two-dimensional body that is to be divided into equal increments in both
the x and y directions, as shown in Figure 3-5. The nodal points are designated as shown,
the m locations indicating the x increment and the n locations indicating the y incre-
ment. We wish to establish the temperatures at any of these nodal points within the body,
using Equation (3-1) as a governing condition. Finite differences are used to approxi-
mate differential increments in the temperature and space coordinates; and the smaller we
choose these finite increments, the more closely the true temperature distribution will be
approximated.



P1: GFZ

chapter-03 7925D-Holman August 17, 2001 12:46

CHAPTER 3 Steady-State Conduction—Multiple Dimensions 83

The temperature gradients may be written as follows:

∂T

∂x

]
m+1/2,n

≈ Tm+1,n − Tm,n

	x

∂T

∂x

]
m−1/2,n

≈ Tm,n − Tm−1,n

	x

∂T

∂y

]
m,n+1/2

≈ Tm,n+1 − Tm,n

	y

∂T

∂y

]
m,n−1/2

≈ Tm,n − Tm,n−1

	y

∂2T

∂x2

]
m,n

≈

∂T

∂x

]
m+1/2,n

− ∂T

∂x

]
m−1/2,n

	x
= Tm+1,n + Tm−1,n − 2Tm,n

(	x)2

∂2T

∂y2

]
m,n

≈

∂T

∂y

]
m,n+1/2

− ∂T

∂y

]
m,n−1/2

	y
= Tm,n+1 + Tm,n−1 − 2Tm,n

(	y)2

Thus the finite-difference approximation for Equation (3-1) becomes

Tm+1,n + Tm−1,n − 2Tm,n

(	x)2
+ Tm,n+1 + Tm,n−1 − 2Tm,n

(	y)2
= 0

If 	x = 	y, then

Tm+1,n + Tm−1,n + Tm,n+1 + Tm,n−1 − 4Tm,n = 0 [3-24]

Since we are considering the case of constant thermal conductivity, the heat flows may all
be expressed in terms of temperature differentials. Equation (3-24) states very simply that
the net heat flow into any node is zero at steady-state conditions. In effect, the numerical
finite-difference approach replaces the continuous temperature distribution by fictitious
heat-conducting rods connected between small nodal points which do not generate heat.

We can also devise a finite-difference scheme to take heat generation into account. We
merely add the term q̇/k into the general equation and obtain

Tm+1,n + Tm−1,n − 2Tm,n

(	x)2
+ Tm,n+1 + Tm,n−1 − 2Tm,n

(	y)2
+ q̇

k
= 0

Then for a square grid in which 	x = 	y,

Tm+1,n + Tm−1,n + Tm,n+1 + Tm,n−1 + q̇(	x)2

k
− 4Tm,n−1 = 0 [3-24a]

To utilize the numerical method, Equation (3-24) must be written for each node within the
material and the resultant system of equations solved for the temperatures at the various
nodes. A very simple example is shown in Figure 3-6, and the four equations for nodes 1, 2,
3, and 4 would be

100 + 500 + T2 + T3 − 4T1 = 0

T1 + 500 + 100 + T4 − 4T2 = 0

100 + T1 + T4 + 100 − 4T3 = 0

T3 + T2 + 100 + 100 − 4T4 = 0
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Figure 3-6 Four-node problem.

T = 100˚C

T = 500˚C

T
=

10
0 ˚

C

T
=

10
0 ˚

C

1 2

3 4

These equations have the solution

T1 = T2 = 250◦C T3 = T4 = 150◦C

Of course, we could recognize from symmetry that T1 = T2 and T3 = T4 and would then
only need two nodal equations,

100 + 500 + T3 − 3T1 = 0

100 + T1 + 100 − 3T3 = 0

Once the temperatures are determined, the heat flow may be calculated from

q =
∑

k 	x
	T

	y

where the 	T is taken at the boundaries. In the example the heat flow may be calculated
at either the 500◦C face or the three 100◦C faces. If a sufficiently fine grid is used, the two
values should be very nearly the same. As a matter of general practice, it is usually best to
take the arithmetic average of the two values for use in the calculations. In the example the
two calculations yield:

500◦C face:

q = −k
	x

	y
[(250 − 500) + (250 − 500)] = 500k

100◦C face:

q = −k
	y

	x
[(250 − 100) + (150 − 100) + (150 − 100) + (150 − 100) + (150 − 100)

+ (250 − 100)] = −500k

and the two values agree in this case. The calculation of the heat flow in cases in which
curved boundaries or complicated shapes are involved is treated in References 2, 3, and 15.

When the solid is exposed to some convection boundary condition, the temperatures
at the surface must be computed differently from the method given above. Consider the
boundary shown in Figure 3-7. The energy balance on node (m, n) is

−k 	y
Tm,n − Tm−1,n

	x
− k

	x

2

Tm,n − Tm,n+1

	y
− k

	x

2

Tm,n − Tm,n+1

	y

= h 	y(Tm,n − T∞)

If 	x = 	y, the boundary temperature is expressed in the equation

Tm,n

(
h 	x

k
+ 2

)
− h 	x

k
T∞ − 1

2
(2Tm−1,n + Tm,n+1 + Tm,n−1) = 0 [3-25]
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Figure 3-7 Nomenclature for nodal
equation with convective
boundary condition.

m, n

m, n − 1

q

m, n + 1

m − 1, n

∆y

∆y

∆x

∆x
2 Surface

T∞

An equation of this type must be written for each node along the surface shown in
Figure 3-7. So when a convection boundary condition is present, an equation like (3-25) is
used at the boundary and an equation like (3-24) is used for the interior points.

Equation (3-25) applies to a plane surface exposed to a convection boundary condition.
It will not apply for other situations, such as an insulated wall or a corner exposed to
a convection boundary condition. Consider the corner section shown in Figure 3-8. The
energy balance for the corner section is

−k
	y

2

Tm,n − Tm−1,m

	x
− k

	x

2

Tm,n − Tm,n−1

	y
= h

	x

2
(Tm,n − T∞) + h

	y

2
(Tm,n − T∞)

If 	x = 	y,

2Tm,n

(
h 	x

k
+ 1

)
− 2

h 	x

k
T∞ − (Tm−1,n + Tm,n−1) = 0 [3-26]

Other boundary conditions may be treated in a similar fashion, and a convenient
summary of nodal equations is given in Table 3-2 for different geometrical and bound-
ary situations. Situations f and g are of particular interest since they provide the calculation
equations which may be employed with curved boundaries, while still using uniform incre-
ments in 	x and 	y.

Figure 3-8 Nomenclature for
nodal equation with
convection at a corner
section.

m, n − 1

m, nm − 1, n

m − 1, n − 1

∆y

∆x

∆y
2

T∞

∆x
2
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Table 3-2 Summary of nodal formulas for finite-difference calculations (Dashed lines indicate element volume.)†

Nodal equation for equal increments in x and y
Physical situation (second equation in situation is in form for Gauss-Seidel iteration)

(a) Interior node 0 = Tm+1,n + Tm,n +1 + Tm−1,n + Tm,n −1 − 4Tm,n

Tm,n = (Tm+1,n + Tm,n +1 + Tm−1,n + Tm,n −1)/4

m, n + 1

m, n − 1

m, nm − 1, n m + 1, n
∆y

∆y

∆x ∆x

(b) Convection boundary node 0 = h	x
k

T∞ + 1
2

(2Tm−1,n + Tm,n +1 + Tm,n −1) −
(

h	x
k

+ 2
)

Tm,n

Tm,n = Tm−1,n + (Tm,n +1 + Tm,n −1)/2 + BiT∞
2 + Bi

Bi = h	x
k

m, n + 1

m, n − 1

m, n
m − 1, n

∆y

∆y

∆x

h, T∞

(c) Exterior corner with convection boundary 0 = 2
h	x

k
T∞ + (Tm−1,n + Tm,n −1) − 2

(
h	x

k
+ 1

)
Tm,n

Tm,n = Tm−1,n + Tm,n −1)/2 + BiT∞
1 + Bi

Bi = h	x
k

m, n − 1

m, n
m − 1, n

∆y

∆x

h, T∞

(d ) Interior corner with convection boundary 0 = 2
h	x

k
T∞ + 2Tm−1,n + Tm,n +1 + Tm+1,n + Tm,n −1 − 2

(
3 + h	x

k

)
Tm,n

Tm,n = BiT∞ + Tm,n +1Tm−1,n + (Tm+1,n + Tm,n −1)/2
3 + Bi

Bi = h	x
k

m, n − 1

m, n + 1

m, nm − 1, n m + 1, n

h, T∞∆y

∆x
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Table 3-2 (Continued ).

Nodal equation for equal increments in x and y
Physical situation (second equation in situation is in form for Gauss-Seidel iteration)

(e) Insulated boundary 0 = Tm,n +1 + Tm,n −1 + 2Tm−1,n − 4Tm,n

Tm,n = (Tm,n +1 + Tm,n −1 + 2Tm−1,n)/4

m, n − 1

m, n + 1

m − 1, n

∆y

∆x

m, n

In
su

la
te

d

( f ) Interior node near curved boundary‡
0 = 2

b(b + 1)
T2 + 2

a + 1
Tm+1,n + 2

b + 1
Tm,n −1 + 2

a(a + 1)
T1 − 2

(
1
a

+ 1
b

)
Tm,n

3

2
1

m, n + 1

m, n − 1

m, nm − 1, n m + 1, n

h,T∞

∆y

∆y

∆x

a ∆x

∆x

c ∆x

b ∆x

(g) Boundary node with convection along
curved boundary—node 2 for ( f ) above§

0 = b√
a2 + b2

T1 + b√
c2 + 1

T3 + a + 1
b

Tm,n + h	x
k

(√
c2 + 1 +

√
a2 + b2

)
T∞

−
[

b√
a2 + b2

+ b√
c2 + 1

+ a + 1
b

+
(√

c2 + 1 +
√

a2 + b2
) h	x

k

]
T2

†Convection boundary may be converted to insulated surface by setting h = 0 (Bi = 0).
‡This equation is obtained by multiplying the resistance by 4/(a + 1)(b + 1).
§This relation is obtained by dividing the resistance formulation by 2.

Nine-Node Problem EXAMPLE 3-5

Consider the square of Figure Example 3-5. The left face is maintained at 100◦C and the
top face at 500◦C, while the other two faces are exposed to an environment at 100◦C:

h = 10 W/m2 ·◦C and k = 10 W/m ·◦C

The block is 1 m square. Compute the temperature of the various nodes as indicated in
Figure Example 3-5 and the heat flows at the boundaries.

� Solution
The nodal equation for nodes 1, 2, 4, and 5 is

Tm+1,n + Tm−1,n + Tm,n +1 + Tm,n −1 − 4Tm,n = 0

The equation for nodes 3, 6, 7, and 8 is given by Equation (3-25), and the equation for
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Figure Example 3-5
Nomenclature for Example 3-5.

T = 500˚C

T
=

10
0 ˚

C

1 2 3

4 5 6

7 8 9

T∞ =
100˚C

1 m

1 m

9 is given by Equation (3-26):

h 	x
k

= (10)(1)
(3)(10)

= 1
3

The equations for nodes 3 and 6 are thus written

2T2 + T6 + 567 − 4.67T3 = 0

2T5 + T3 + T9 + 67 − 4.67T6 = 0

The equations for nodes 7 and 8 are given by

2T4 + T8 + 167 − 4.67T7 = 0

2T5 + T7 + T9 + 67 − 4.67T8 = 0

and the equation for node 9 is

T6 + T8 + 67 − 2.67T9 = 0

We thus have nine equations and nine unknown nodal temperatures. We shall discuss
solution techniques shortly, but for now we just list the answers:

Node Temperature, ◦C

1 280.67
2 330.30
3 309.38
4 192.38
5 231.15
6 217.19
7 157.70
8 184.71
9 175.62

The heat flows at the boundaries are computed in two ways: as conduction flows for the
100 and 500◦C faces and as convection flows for the other two faces. For the 500◦C
face, the heat flow into the face is

q =
∑

k 	x
	T
	y

= (10)
[
500 − 280.67 + 500 − 330.30 + (500 − 309.38)

(
1
2

)]
= 4843.4 W/m
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The heat flow out of the 100◦C face is

q =
∑

k 	y
	T
	x

= (10)
[
280.67 − 100 + 192.38 − 100 + (157.70 − 100)

(
1
2

)]
= 3019 W/m

The convection heat flow out the right face is given by the convection relation

q =
∑

h 	y (T − T∞)

= (10)
(

1
3

)[
309.38 − 100 + 217.19 − 100 + (175.62 − 100)

(
1
2

)]
= 1214.6 W/m

Finally, the convection heat flow out the bottom face is

q =
∑

h 	x(T − T∞)

= (10)
(

1
3

)[
(100 − 100)

(
1
2

)
+ 157.70 − 100 + 184.71 − 100 + (175.62 − 100)

(
1
2

)]
= 600.7 W/m

The total heat flow out is

qout = 3019 + 1214.6 + 600.7 = 4834.3 W/m

This compares favorably with the 4843.4 W/m conducted into the top face. A solution of
this example using the Excel spreadsheet format is given in Appendix D.

Solution Techniques

From the foregoing discussion we have seen that the numerical method is simply a means
of approximating a continuous temperature distribution with the finite nodal elements. The
more nodes taken, the closer the approximation; but, of course, more equations mean more
cumbersome solutions. Fortunately, computers and even programmable calculators have
the capability to obtain these solutions very quickly.

In practical problems the selection of a large number of nodes may be unnecessary
because of uncertainties in boundary conditions. For example, it is not uncommon to have
uncertainties in h, the convection coefficient, of ±15 to 20 percent.

The nodal equations may be written as

a11T1 + a12T2 + · · · + a1nTn = C1

a2l T1 + a22T2 + · · · = C2

a31T1 + · · · = C3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1T1 + an2T2 + · · · + annTn = Cn

[3-27]

where T1, T2, . . . , Tn are the unknown nodal temperatures. By using the matrix notation

[A] =




a11 a12 · · · a1n

a21 a22 · · ·
a31 · · ·
. . . . . . . . . . . . . . . . . .

an1 an2 · · · ann


 [C] =




C1

C2

·
·
·

Cn


 [T ] =




T1

T2

·
·
·

Tn
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Equation (3-27) can be expressed as

[A][T ] = [C] [3-28]

and the problem is to find the inverse of [A] such that

[T ] = [A]−1[C] [3-29]

Designating [A]−1 by

[A]−1 =




b11 b12 · · · b1n

b21 b22 · · ·
. . . . . . . . . . . . . . . . . .

bn1 bn2 · · · bnn




the final solutions for the unknown temperatures are written in expanded form as

T1 = b11C1 + b12C2 + · · · + b1nCn

T2 = b2lC1 + · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tn = bn1C1 + bn2C2 + · · · + bnnCn

[3-30]

Clearly, the larger the number of nodes, the more complex and time-consuming the solution,
even with a high-speed computer. For most conduction problems the matrix contains a
large number of zero elements so that some simplification in the procedure is afforded. For
example, the matrix notation for the system of Example 3-5 would be


−4 1 0 1 0 0 0 0 0
1 −4 1 0 1 0 0 0 0
0 2 − 4.67 0 0 1 0 0 0
1 0 0 −4 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 2 − 4.67 0 0 1
0 0 0 2 0 0 − 4.67 1 0
0 0 0 0 2 0 1 − 4.67 1
0 0 0 0 0 1 0 1 − 2.67







T1

T2

T3

T4

T5

T6

T7

T8

T9




=




−600
−500
−567
−100

0
− 67
−167
− 67
− 67




We see that because of the structure of the equations the coefficient matrix is very sparse. For
this reason iterative methods of solution may be very efficient. The Gauss-Seidel iteration
method is probably the most widely used for solution of these equations in heat transfer
problems, and we shall discuss that method in Section 3-7.

Software Packages for Solution of Equations

Several software packages are available for solution of simultaneous equations, including
MathCAD (22), TK Solver (23), Matlab (24), and Microsoft Excel (25, 26, 27). The spread-
sheet grid of Excel is particularly adaptable to formulation, solution, and graphical displays
associated with the nodal equations. Details of the use of Excel as a tool for such problems
are presented in Appendix D for both steady-state and transient conditions.

An example of an Excel worksheet is shown in Figure 3-9, which includes a schematic
of a protruding fin cooled by a convection environment, numerical solution displayed to
match the geometric configuration, and four graphical presentations of the results. While one
might regard this presentation as graphical overkill, it does illustrate a variety of options
available in the Excel format. Several examples are discussed in detail in Appendix D,
including the effects of heat sources and radiation boundary conditions.
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Figure 3-9 Excel solution of cooled fin in base.

Other methods of solution include a transient analysis carried through to steady state
(see Chapter 4), direct elimination (Gauss elimination [9]), or more sophisticated iterative
techniques [12]. An Excel spreadsheet solution treating Example 3-5 as a transient problem
carried through to steady state is given Appendix D.

3-6 NUMERICAL FORMULATION IN TERMS
OF RESISTANCE ELEMENTS

Up to this point we have shown how conduction problems can be solved by finite-difference
approximations to the differential equations. An equation is formulated for each node and
the set of equations solved for the temperatures throughout the body. In formulating the
equations we could just as well have used a resistance concept for writing the heat transfer
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Figure 3-10 General conduction
node.

i

Ri4

Rij

Ri1

Ri2

Ri3

Etc.

43

2

1

j

between nodes. Designating our node of interest with the subscript i and the adjoining nodes
with subscript j, we have the general-conduction-node situation shown in Figure 3-10. At
steady state the net heat input to node i must be zero or

qi +
∑

j

Tj − Ti

Ri j
= 0 [3-31]

where qi is the heat delivered to node i by heat generation, radiation, etc. The Ri j can take
the form of convection boundaries, internal conduction, etc., and Equation (3-31) can be
set equal to some residual for a relaxation solution or to zero for treatment with matrix
methods.

No new information is conveyed by using a resistance formulation, but some workers
may find it convenient to think in these terms. When a numerical solution is to be performed
that takes into account property variations, the resistance formulation is particularly useful.
In addition, there are many heat-transfer problems where it is convenient to think of con-
vection and radiation boundary conditions in terms of the thermal resistance they impose on
the system. In such cases the relative magnitudes of convection, radiation, and conduction
resistances may have an important influence on the behavior of the thermal model. We
shall examine different boundary resistances in the examples. It will be clear that one will
want to increase thermal resistances when desiring to impede the heat flow and decrease
the thermal resistance when an increase in heat transfer is sought. In some cases the term
thermal impedance is employed as a synonym for thermal resistance, following this line of
thinking.

For convenience of the reader Table 3-3 lists the resistance elements that correspond
to the nodes in Table 3-2. Note that all resistance elements are for unit depth of material
and 	x = 	y. The nomenclature for the table is that Rm+ refers to the resistance on the
positive x side of node (m, n), Rn− refers to the resistance on the negative y side of node
(m, n), and so on.

The resistance formulation is also useful for numerical solution of complicated three-
dimensional shapes. The volume elements for the three common coordinate systems are
shown in Figure 3-11, and internal nodal resistances for each system are given in Table 3-4.
The nomenclature for the (m, n, k) subscripts is given at the top of the table, and the plus
or minus sign on the resistance subscripts designates the resistance in a positive or negative
direction from the central node (m, n, k). The elemental volume 	V is also indicated for
each coordinate system. We note, of course, that in a practical problem the coordinate
increments are frequently chosen so that 	x = 	y = 	z, etc., and the resistances are
simplified.
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Table 3-3 Resistances for nodes of Table 3-2 	x = 	y, 	z = 1.

Physical situation Rm+ Rm− Rn+ Rn− ∆V

(a) Interior node
1
k

1
k

1
k

1
k

(	x)2

(b) Convection boundary
1

h	x
1
k

2
k

2
k

(	x)2

2

(c) Exterior corner, convection
2

h	x
2
k

2
h	x

2
k

(	x)2

4

(d) Interior corner, convection† 2
k

1
k

1
k

2
k

3(	x)2

4

(e) Insulated boundary ∞ 1
k

2
k

2
k

(	x)2

2

( f ) Interior node near
curved boundary

2
(b+ 1)k

to node
(m+ 1, n)

2a
(b+ 1)k
to node 1

2b
(a + 1)k
to node 2

2
(a + 1)k
to node
(m, n − 1)

0.25(1 + a)(1 + b)(	x)2

(g) Boundary node with
curved boundary
node 2 for ( f ) above

R23 = 2
√

c2 + 1
bk

R21 = 2
√

a2 + b2

bk

R2−∞ = 2

h	x
(√

c2 + 1 + √
a2 + b2

)

Rn− = 2b
k(a + 1)

to node (m, n)

	V = 0.125[(2 + a) + c](	x)2

†Also R∞ = 1/h	x for convection to T∞.

3-7 GAUSS-SEIDEL ITERATION
When the number of nodes is very large, an iterative technique may frequently yield a more
efficient solution to the nodal equations than a direct matrix inversion. One such method is
called the Gauss-Seidel iteration and is applied in the following way. From Equation (3-31)
we may solve for the temperature Ti in terms of the resistances and temperatures of the
adjoining nodes Tj as

Ti =
qi + ∑

j
(Tj/Ri j )∑

j
(1/Ri j )

[3-32]

The Gauss-Seidel iteration makes use of the difference equations expressed in the form
of Equation (3-32) through the following procedure.

1. An initial set of values for the Ti is assumed. This initial assumption can be obtained
through any expedient method. For a large number of nodes to be solved on a
computer the Ti ’s are usually assigned a zero value to start the calculation.

2. Next, the new values of the nodal temperatures Ti are calculated according to
Equation (3-32), always using the most recent values of the Tj .

3. The process is repeated until successive calculations differ by a sufficiently small
amount. In terms of a computer program, this means that a test will be inserted to stop
the calculations when ∣∣Tin+1 − Tin

∣∣ ≤ δ for all Ti
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Figure 3-11 Volume of resistance elements: (a) cartesian, (b) cylindrical, and
(c) spherical coordinate systems.

y

x

Rn+

Rn+

Rm+

(a)

(b)

(c)Rm+

∆y

∆x
∆z

z

y

Rk+

Rk+

z

y

rm

rm

x

x

z

∆φφ

Rm+

Rk+

Rn+

∆φφ

φφ

∆θθ
θθ

Table 3-4 Internal nodal resistances for different coordinate systems.

Cartesian Cylindrical Spherical

Nomenclature for increments x, m
y, n
z, k

r, m
φ, n
z, k

r, m
φ, n
θ, k

Volume element 	V 	x	y	z rm	r 	φ	z r 2
m sin θ	r 	φ	θ

Rm+
	x

	y	zk
	r

(rm + 	r/2)	φ	zk
	r

(rm +	r/2)2 sin θ	φ	θ k

Rm−
	x

	y	zk
	r

(rm + 	r/2)	φ	zk
	r

(rm + 	r/2) sin θ	φ	θ k

Rn+
	y

	x	zk
rm	φ

	r 	zk
	φ sin θ

	r 	θ k

Rn−
	y

	x	zk
rm	φ

	r 	zk
	φ sin θ

	r 	θ k

Rk+
	z

	x	y k
	z

rm	φ	r k
	θ

sin(θ + 	θ/2)	r 	φ k

Rk−
	z

	x	y k
	z

rm	φ	r k
	φ

sin(θ + 	θ/2)	r 	φ k
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where δ is some selected constant and n is the number of iterations. Alternatively, a
nondimensional test may be selected such that

ε ≥
∣∣∣∣Tin+1 − Tin

Tin

∣∣∣∣
Obviously, the smaller the value of δ, the greater the calculation time required to
obtain the desired result. The reader should note, however, that the accuracy of the
solution to the physical problem is not dependent on the value of δ alone. This
constant governs the accuracy of the solution to the set of difference equations. The
solution to the physical problem also depends on the selection of the increment 	x .

As we noted in the discussion of solution techniques, the matrices encountered in the
numerical formulations are very sparse; they contain a large number of zeros. In solving a
problem with a large number of nodes it may be quite time-consuming to enter all these
zeros, and the simple form of the Gauss-Seidel equation may be preferable.

Equations for ∆x = ∆y

For nodes with 	x = 	y and no heat generation, the form of Equation (3-32) has been
listed as the second equation in segments of Table 3-2. The nondimensional group

h 	x

k
= Bi

is called the Biot number. Note that equations for convection boundaries may be converted
to insulated boundaries by simply setting Bi = 0 in the respective formula.

Heat Sources and Boundary Radiation Exchange

To include heat generation or radiation heat transfer in the nodal equations for 	x = 	y,
one need only add a term

qi/k

to the numerator of each of the equations. For heat sources

qi = q̇	V

where q̇ is the heat generated per unit volume and 	V is the volume of the respective node.
Note that the volume elements are indicated in Table 3-2 by dashed lines. For an interior
node 	V = 	x	y, for a plane convection boundary 	V = (	x/2)	y, for an exterior
corner 	V = (	x/2)(	y/2), etc.

For radiation exchange at boundary note,

qi = q ′′
rad,i × 	A

where 	A is the surface area of the node exposed to radiation, and q ′′
rad,i is the net radiation

transferred to node i per unit area as determined by the methods of Chapter 8.
For the common case of a surface exposed to a large enclosure at radiation temperature

of Tr , the net radiation to the surface per unit area is given by Equation (1-12),

q ′′
rad,i = σεi

(
T 4

r − T 4
i

)
where εi is the emissivity of note i and all temperatures must by expressed in degrees
absolute.
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3-8 ACCURACY CONSIDERATIONS
We have already noted that the finite-difference approximation to a physical problem
improves as smaller and smaller and smaller increments of 	x and 	y are used. But we
have not said how to estimate the accuracy of this approximation. Two basic approaches
are available.

1. Compare the numerical solution with an analytical solution for the problem, if
available, or an analytical solution for a similar problem.

2. Choose progressively smaller values of 	x and observe the behavior of the solution.
If the problem has been correctly formulated and solved, the nodal temperatures
should converge as 	x becomes smaller. It should be noted that computational
round-off errors increase with an increase in the number of nodes because of the
increased number of machine calculations. This is why one needs to observe the
convergence of the solution.

It can be shown that the error of the finite-difference approximation to ∂T/∂x is of the
order of (	x/L)2 where L is some characteristic body dimension.

Analytical solutions are of limited utility in checking the accuracy of a numerical model
because most problems that will need to be solved by numerical methods either do not have
an analytical solution at all, or if one is available, it may be too cumbersome to compute.

Energy Balance as Check on Solution Accuracy

In discussing solution techniques for nodal equations, we stated that an accurate solution of
these equations does not ensure an accurate solution to the physical problem. In many cases
the final solution is in serious error simply because the problem was not formulated correctly
at the start. No computer or convergence criterion can correct this kind of error. One way
to check for formulation errors is to perform some sort of energy balance using the final
solution. The nature of the balance varies from problem to problem but for steady state it
always takes the form of energy in equals energy out. If the energy balance does not check
within reasonable limits, there is a likelihood that the problem has not been formulated
correctly. Perhaps a constant is wrong here or there, or an input data point is incorrect, a
faulty computer statement employed, or one or more nodal equations incorrectly written.
If the energy balance does check, one may then address the issue of using smaller values
of 	x to improve accuracy.

In the examples we present energy balances as a check on problem formulation.

Accuracy of Properties and Boundary Conditions

From time to time we have mentioned that thermal conductivities of materials vary with
temperature; however, over a temperature range of 100 to 200◦C the variation is not great
(on the order of 5 to 10 percent) and we are justified in assuming constant values to
simplify problem solutions. Convection and radiation boundary conditions are particularly
notorious for their nonconstant behavior. Even worse is the fact that for many practical
problems the basic uncertainty in our knowledge of convection heat-transfer coefficients
may not be better than +−−25 percent. Uncertainties of surface-radiation properties of +−−10
percent are not unusual at all. For example, a highly polished aluminum plate, if allowed
to oxidize heavily, will absorb as much as 300 percent more radiation than when it was
polished.

The above remarks are not made to alarm the reader, but rather to show that selection
of a large number of nodes for a numerical formulation does not necessarily produce
an accurate solution to the physical problem; we must also examine uncertainties in the
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boundary conditions. At this point the reader is ill-equipped to estimate these uncertainties.
Later chapters on convection and radiation will clarify the matter.

Gauss-Seidel Calculation EXAMPLE 3-6

Apply the Gauss-Seidel technique to obtain the nodal temperatures for the four nodes in
Figure 3-6.

� Solution
It is useful to think in terms of a resistance formulation for this problem because all the
connecting resistances between the nodes in Figure 3-6 are equal; that is,

R = 	y
k 	y

= 	x
k 	y

= 1
k

[a]

Therefore, when we apply Equation (3-32) to each node, we obtain (qi = 0)

Ti =

∑
j

k j Tj∑
j

k j
[b]

Because each node has four resistances connected to it and k is assumed constant,∑
j

k j = 4k

and

Ti = 1
4

∑
j

Tj [c]

We now set up an iteration table as shown and use initial temperature assumptions of
300 and 200◦C. Equation (c) is then applied repeatedly until satisfactory convergence is
achieved. In the table, five iterations produce convergence with 0.13 degree. To illustrate
the calculation, we can note the two specific cases below:

(T2)n=1 = 1
4 (500 + 100 + T4 + T1) = 1

4 (500 + 100 + 200 + 275) = 268.75

(T3)n=4 = 1
4 (100 + T1 + T4 + 100) = 1

4 (100 + 250.52 + 150.52 + 100) = 150.26

Number of
iterations n T1 T2 T3 T4

0 300 300 200 200
1 275 268.75 168.75 159.38
2 259.38 254.69 154.69 152.35
3 251.76 251.03 151.03 150.52
4 250.52 250.26 150.26 150.13
5 250.13 250.07 150.07 150.03

Note that in computing (T3)n=4 we have used the most recent information available to us
for T1 and T4.

Numerical Formulation with Heat Generation EXAMPLE 3-7

We illustrate the resistance formulation in cylindrical coordinates by considering a 4.0-
mm-diameter wire with uniform heat generation of 500 MW/m3. The outside surface
temperature of the wire is 200◦C, and the thermal conductivity is 19 W/m ·◦ C. We wish
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Figure Example 3-7B Comparison of
analytical and
numerical solution.

Analytical
Numerical
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T
–

T
w

, ˚
C

Figure Example 3-7A
Example Schematic.

41 2 3

to calculate the temperature distribution in the wire. For this purpose we select four nodes
as shown in Figure Example 3-7A. We shall make the calculations per unit length, so we
let 	z = 1.0. Because the system is one-dimensional, we take 	φ = 2π . For all the ele-
ments 	r is chosen as 0.5 mm. We then compute the resistances and volume elements
using the relations from Table 3-4, and the values are given below. The computation of
Rm+ for node 4 is different from the others because the heat-flow path is shorter. For node
4, rm is 1.75 mm, so the positive resistance extending to the known surface temperature is

Rm+ = 	r/2
(rm + 	r/4) 	φ 	zk

= 1
15πk

The temperature equation for node 4 is written as

T4 = 2749 + 6πkT3 + 15πk(200)
21πk

where the 200 is the known outer surface temperature.

rm, Rm+, Rm−, ∆V = rm ∆r ∆φ∆z, qi = q̇∆V,
Node mm ◦C/W ◦C/W µm3 W

1 0.25
1

2πk
∞ 0.785 392.5

2 0.75
1

4πk
1

2πk
2.356 1178

3 1.25
1

6πk
1

4πk
3.927 1964

4 1.75
1

15πk
1

6πk
5.498 2749
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A summary of the values of
∑

(1/Ri j ) and Ti according to Equation (3-32) is now given
to be used in a Gauss-Seidel iteration scheme.

Node
∑ 1

Ri j
, W/◦C Ti =

qi +
∑

(Tj/Ri j )∑
(1/Ri j )

1 2πk = 119.38 T1 = 3.288 + T2

2 6πk = 358.14 T2 = 3.289 + 1
3 T1 + 2

3 T3

3 10πk = 596.90 T3 = 3.290 + 0.4T2 + 0.6T4

4 21πk = 1253.50 T4 = 2.193 + 2
7 T3 + 142.857

Thirteen iterations are now tabulated:

Node temperature, ◦C

Iteration n T1 T2 T3 T4

0 240 230 220 210
1 233.29 227.72 220.38 208.02
2 231.01 227.21 218.99 207.62
3 230.50 226.12 218.31 207.42
4 229.41 225.30 217.86 207.30
5 228.59 224.73 217.56 207.21
6 228.02 224.34 217.35 207.15
7 227.63 224.07 217.21 207.11
8 227.36 223.88 217.11 207.08
9 227.17 223.75 217.04 207.06

10 227.04 223.66 216.99 207.04
11 226.95 223.60 216.95 207.04
12 226.89 223.55 216.93 207.03
13 226.84 223.52 216.92 207.03

Analytical 225.904 222.615 216.036 206.168
Gauss-Seidel check 225.903 222.614 216.037 206.775
Exact solution

of nodal equations 226.75 223.462 216.884 207.017

We may compare the iterative solution with an exact calculation that makes use of Equa-
tion (2-25a):

T − Tw = q̇
4k

(R2 − r 2)

where Tw is the 200◦C surface temperature, R = 2.0 mm, and r is the value of rm for each
node. The analytical values are shown below the last iteration, and then a Gauss-Seidel
check is made on the analytical values. There is excellent agreement on the first three
nodes and somewhat less on node 4. Finally, the exact solutions to the nodal equations
are shown for comparison. These are the values the iterative scheme would converge
to if carried far enough. In this limit the analytical and numerical calculations differ by a
constant factor of about 0.85◦C, and this difference results mainly from the way in which
the surface resistance and boundary condition are handled. A smaller value of 	r near
the surface would produce better agreement. A graphical comparison of the analytical
and numerical solutions is shown in Figure Example 3-7B.

The total heat loss from the wire may be calculated as the conduction through Rm+
at node 4. Then

q = T4 − Tw

Rm+
= 15πk(207.03 − 200) = 6.294 kW/m [6548 Btu/h · ft]
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This must equal the total heat generated in the wire, or

q= q̇V = (500 × 106)π (2 × 10−3)2 = 6.283 kW/m [6536 Btu/h · ft]

The difference between the two values results from the inaccuracy in determination of
T4. Using the exact solution value of 207.017◦C would give a heat loss of 6.2827 kW.
For this problem the exact value of heat flow is 6.283 kW because the heat-generation
calculation is independent of the finite-difference formulation.

EXAMPLE 3-8 Heat Generation with Nonuniform Nodal Elements

A layer of glass [k = 0.8 W/m · ◦C] 3 mm thick has thin 1-mm electric conducting strips
attached to the upper surface, as shown in Figure Example 3-8. The bottom surface of the
glass is insulated, and the top surface is exposed to a convection environment at 30◦C with
h = 100 W/m2 · ◦C. The strips generate heat at the rate of 40 or 20 W per meter of length.
Determine the steady-state temperature distribution in a typical glass section, using the
numerical method for both heat-generation rates.

Figure Example 3-8 (a) Physical system, (b) nodal boundaries.

3.0 cm 3.0 cm

1 mm
Heater

Heater

Glass
3 mm

1 mm

5 mm

1

8
15
22

2

9
16
23

3

10
17
24

4

11
18
25

5

12
19
26

6

13
20
27

7

14
21
28

T∞ = 30˚C

T∞ = 30˚C

Insulation

(a)

(b)

� Solution
The nodal network for a typical section of the glass is shown in the figure. In this example
we have not chosen 	x = 	y. Because of symmetry, T1 = T7, T2 = T6, etc., and we only
need to solve for the temperatures of 16 nodes. We employ the resistance formulation.
As shown, we have chosen 	x = 5 mm and 	y = 1 mm. The various resistances may
now be calculated:
Nodes 1, 2, 3, 4:

1
Rm+

= 1
Rm−

= k(	y/2)
	x

= (0.8)(0.001/2)
0.005

= 0.08

1
Rn+

= hA = (100)(0.005) = 0.5

1
Rn−

= k 	x
	y

= (0.8)(0.005)
0.001

= 4.0
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Nodes 8, 9, 10, 11, 15, 16, 17, 18:

1
Rm+

= 1
Rm−

= k �y
�x

= (0.8)(0.001)
0.005

= 0.16

1
Rn+

= 1
Rn−

= k �x
�y

= 4.0

Nodes 22, 23, 24, 25:

1
Rm+

= 1
Rm−

= k(�y/2)
�x

= 0.08

1
Rn+

= k �x
�y

= 4.0

1
Rn−

= 0 (insulated surface)

The nodal equations are obtained from Equation (3-31) in the general form
∑

(Tj /Ri j ) + qi − Ti

∑
(1/Ri j ) = 0

Only node 4 has a heat-generation term, and qi = 0 for all other nodes. From the above
resistances we may calculate the

∑
(1/Ri j ) as

Node
∑

(1/Ri j )

1, 2, 3, 4 4.66
8,. . .,18 8.32
22, 23, 24, 25 4.16

For node 4 the equation is

(2)(0.08)T3 + 4.0T5 + (0.5)(30) + q4 − 4.66T4 = 0

The factor of 2 on T3 occurs because T3 = T5 from symmetry. When all equations are
evaluated and the matrix is solved, the following temperatures are obtained:

q/L, W/mNode
temperature,

◦C 20 40

1 31.90309 33.80617
2 32.78716 35.57433
3 36.35496 42.70993
4 49.81266 69.62532
8 32.10561 34.21122
9 33.08189 36.16377

10 36.95154 43.90307
11 47.82755 65.65510
15 32.23003 34.46006
16 33.26087 36.52174
17 37.26785 44.53571
18 46.71252 63.42504
22 32.27198 34.54397
23 33.32081 36.64162
24 37.36667 44.73333
25 46.35306 62.70613
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The results of the model and calculations may be checked by calculating the convection
heat lost by the top surface. Because all the energy generated in the small heater strip
must eventually be lost by convection (the bottom surface of the glass is insulated and
thus loses no heat), we know the numerical value that the convection should have. The
convection loss at the top surface is given by

qc =
∑

hi Ai (Ti − T∞)

= (2)(100)
[

�x
2

(T1 − T∞) + �x(T2 + T3 − 2T∞) + �x
2

(T4 − T∞)
]

The factor of 2 accounts for both sides of the section. With T∞ = 30◦C this calculation
yields

qc = 19.999995 for q/L = 20 W/m

qc = 40.000005 for q/L = 40 W/m

Obviously, the agreement is excellent.

EXAMPLE 3-9 Composite Material with Nonuniform Nodal Elements

Figure Example 3-9 (a) Physical system, (b) nodal boundaries.

h = 25 W�m2 • C

k = 0.3 W�m • ˚C

k = 2.0 W�m • ˚C

c = 0.8 kJ�kg • ˚C

c = 0.9 kJ�kg • ˚C

1 cm

1 cm

1.5 cm

T = 400˚C

= 2000 kg�m3ρ

= 2800 kg�m3ρ

T∞ = 30˚C

(a)

(b)

1 2 3 2 1

4 5 6 5 4

7 8 9 8 9

10 11 12 11 10

13 14 15 14 13



P1: GFZ

chapter-03 7925D-Holman August 17, 2001 12:46

CHAPTER 3 Steady-State Conduction—Multiple Dimensions 103

A composite material is embedded in a high-thermal-conductivity material maintained at
400◦C as shown in Figure Example 3-9a. The upper surface is exposed to a convection
environment at 30◦C with h = 25 W/m2 · ◦C. Determine the temperature distribution and heat
loss from the upper surface for steady state.

� Solution
For this example we choose nonsquare nodes as shown in Figure Example 3-9b. Note
also that nodes 1, 4, 7, 10, 13, 14, and 15 consist of two materials. We again employ the
resistance formulation.

For node 1:
1

Rm+
= kA

�x
= (2.0)(0.005)

0.015
= 0.6667

1
Rm−

= kA
�x

= (0.3)(0.005)
0.01

= 0.15

1
Rn+

= hA = (25)(0.005 + 0.0075) = 0.3125

1
Rn−

=
(

kA
�y

)
L
+

(
kA
�y

)
R

= (0.3)(0.005) + (2.0)(0.0075)
0.01

= 1.65

For nodes 4, 7, 10:
1

Rm+
= (2.0)(0.01)

0.015
= 1.3333

1
Rm−

= (0.3)(0.01)
0.01

= 0.3

1
Rn+

= 1
Rn−

= 1.65

For node 13:
1

Rm+
= (2.0)(0.005) + (0.3)(0.005)

0.015
= 0.76667

1
Rm−

= (0.3)(0.01)
0.01

= 0.3

1
Rn+

= 1.65

1
Rn−

= (0.3)(0.0075) + (0.3)(0.005)
0.01

= 0.375

For nodes, 5, 6, 8, 9, 11, 12:

1
Rm+

= 1
Rm−

= (2.0)(0.01)
0.015

= 1.3333

1
Rn+

= 1
Rn−

= (2.0)(0.015)
0.01

= 3.0

For nodes 2, 3:
1

Rm+
= 1

Rm−
= (2.0)(0.005)

0.015
= 0.6667

1
Rn+

= hA = (2.5)(0.015) = 0.375

1
Rn−

= 3.0
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For nodes 14, 15:

1
Rm+

= 1
Rm−

= (2.0)(0.005) + (0.3)(0.005)
0.015

= 0.76667

1
Rn+

= 3.0

1
Rn−

= (0.3)(0.015)
0.01

= 0.45

We shall use Equation (3-32) for formulating the nodal equations. For node 1,
∑

(1/Ri j ) =
2.7792, and we obtain

T1 = 1
2.7792

[(400)(0.15) + (30)(0.3125) + T2(0.6667) + 1.65T4]

For node 3,
∑

(1/Ri j ) = 4.7083, and the nodal equation is

T3 = 1
4.7083

[T2(0.6667)(2) + 3.0T6 + (0.375)(30)]

The factor of 2 on T2 occurs because of the mirror image of T2 to the right of T3.
A similar procedure is followed for the other nodes to obtain 15 nodal equations

with the 15 unknown temperatures. These equations may then be solved by whatever
computation method is most convenient. The resulting temperatures are:

T1 = 254.956 T2 = 247.637 T3 = 244.454
T4 = 287.334 T5 = 273.921 T6 = 269.844
T7 = 310.067 T8 = 296.057 T9 = 291.610

T10 = 327.770 T11 = 313.941 T12 = 309.423
T13 = 343.516 T14 = 327.688 T15 = 323.220

The heat flow out the top face is obtained by summing the convection loss from the
nodes:

qconv =
∑

hAi (Ti − T∞)

= (2)(25)[(0.0125)(254.96 − 30) + (0.015)(247.64 − 30)

+ (0.0075)(244.45 − 30)]

= 382.24 W per meter of depth

As a check on this value, we can calculate the heat conducted in from the 400◦C surface
to nodes 1, 4, 7, 10, 13, 14, and 15:

qcond =
∑

kAi
�T
�x

qcond = 2
0.3
0.01

[(0.005)(400 − 254.96) + (0.01)(400 − 287.33) + (0.01)(400 − 310.07)

+ (0.01)(400 − 327.77) + (0.0225)(400 − 343.52) + (0.015)(400 − 327.69)

+ (0.0075)(400 − 323.22)]

= 384.29 W per meter of depth

The agreement is excellent.
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Radiation Boundary Condition EXAMPLE 3-10

A 1-by-2-cm ceramic strip [k = 3.0 W/m · ◦C, ρ = 1600 kg/m3, and c = 0.8 kJ/kg · ◦C] is em-
bedded in a high-thermal-conductivity material, as shown in Figure Example 3-10, so that
the sides are maintained at a constant temperature of 900◦C. The bottom surface of the
ceramic is insulated, and the top surface is exposed to a convection and radiation environ-
ment at T∞ = 50◦C; h = 50 W/m2 · ◦C, and the radiation heat loss is calculated from

q = σ Aε
(

T 4 − T 4
∞

)
where

A = surface area

σ = 5.669 × 10−8 W/m2 · ◦K4

ε = 0.7

Solve for the steady-state temperature distribution of the nodes shown and the rate of heat
loss. The radiation temperatures are in degrees Kelvin.

Figure Example 3-10

2 cm

Insulated
T = 900˚C

T = 900˚C

h, T    = 50˚C

1 cm

1 2 3

4 5 6

7 98

∞

� Solution
We shall employ the resistance formulation and note that the radiation can be written as

q = σε A
(

T 4 − T 4
∞

)
= T − T∞

Rrad
[a]

1
Rrad

= σε A
(

T 2 + T 2
∞

)
(T + T∞) [b]

From symmetry T1 = T3, T4 = T6, and T7 = T9, so we have only six unknown nodes. The
resistances are now computed:
Nodes 1, 2:

1
Rm+

= 1
Rm−

= kA
�x

= (3.0)(0.0025)
0.005

= 1.5
1

Rn−
= (3.0)(0.005)

0.005
= 3.0

1
Rn+,conv

= hA = (50)(0.005) = 0.25 [c]

1
Rn+,rad

= σε A
(

T 2 + T 2
∞

)
(T + T∞)

The radiation term introduces nonlinearities and will force us to employ an iterative
solution.
Nodes 4, 5:

All
1
R

= kA
�x

= (3.0)(0.005)
0.005

= 3.0



P1: GFZ

chapter-03 7925D-Holman August 17, 2001 12:46

106 3-8 Accuracy Considerations

Nodes 7, 8:

1
Rm+

= 1
Rm−

= 1.5
1

Rn+
= 3.0

Because the bottom surface is insulated, 1/Rn− = 0. We now use Equation (3-32)

Ti =
∑

(Tj /Ri j )∑
(1/Ri j )

[3-32]

and tabulate:

Node
∑

(1/Ri j )

1 6.25 + 1/Rrad

2 6.25 + 1/Rrad

4 12
5 12
7 6
8 6

Our nodal equations are thus expressed in degrees Kelvin because of the radiation
terms and become

T1 = 1∑
(1/Ri j )

[1.5T2 + 3T4 + (1.5)(1173) + (323)(0.25)

+ σε(0.005)
(

T 2
1 + 3232

)
(T1 + 323)(323)]

T2 = 1∑
(1/Ri j )

[1.5T1(2) + 3T5 + (323)(0.25)

+ σε(0.005)
(

T 2
2 + 3232

)
(T2 + 323)(323)]

T4 = 1
12 [(1173)(3.0) + 3T1 + 3T7 + 3T5] T5 = 1

12 [2T4(3.0) + 3T2 + 3T8]

T7 = 1
6 [(1173)(1.5) + 3T4 + 1.5T8] T8 = 1

6 [2T7(1.5) + 3T5]

The radiation terms create a very nonlinear set of equations. The computational algo-
rithm we shall use is outlined as follows:

1. Assume T1 = T2 = 1173 K.

2. Compute 1/Rrad and
∑

(1/Ri j ) for nodes 1 and 2 on the basis of this assumption.

3. Solve the set of equations for T1 through T8.

4. Using new values of T1 and T2, recalculate 1/Rrad values.

5. Solve equations again, using new values.

6. Repeat the procedure until answers are sufficiently convergent.

The results of six iterations are shown in the table. As can be seen, the convergence is
quite rapid. The temperatures are in kelvins.

Iteration T1 T2 T4 T5 T7 T8

1 990.840 944.929 1076.181 1041.934 1098.951 1070.442
2 1026.263 991.446 1095.279 1068.233 1113.622 1090.927
3 1019.879 982.979 1091.827 1063.462 1110.967 1087.215
4 1021.056 984.548 1092.464 1064.344 1111.457 1087.901
5 1020.840 984.260 1092.347 1064.182 1111.367 1087.775
6 1020.879 984.313 1092.369 1064.212 1111.384 1087.798
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At this point we may note that in a practical problem the value of ε will only be known
within a tolerance of several percent, and thus there is nothing to be gained by carrying
the solution to unreasonable limits of accuracy.

The heat loss is determined by calculating the radiation and convection from the
top surface (nodes 1, 2, 3):

qrad =
∑

σε Ai

(
T 4

i − 3234
)

= (5.669 × 10−8)(0.7)(0.005)[(2)(1020.884 − 3234) + 984.3134 − 3234]

= 610.8 W/m depth

qconv =
∑

hAi (Ti − 323)

= (50)(0.005)[(2)(1020.88 − 323) + 984.313 − 323] = 514.27 W

qtotal = 610.8 + 514.27 = 1125.07 W/m depth

This can be checked by calculating the conduction input from the 900◦C surfaces:

qcond =
∑

kAi
�T
�x

= (2)(3.0)
0.005

[(0.0025)(1173 − 1020.879) + (0.005)(1173 − 1092.369)

+ (0.0025)(1173 − 1111.384)]

= 1124.99 W/m depth

The agreement is excellent.

Use of Variable Mesh Size EXAMPLE 3-11

One may use a variable mesh size in a problem with a finer mesh to help in regions of
large temperature gradients. This is illustrated in Figure Example 3-11, in which Figure 3-6
is redrawn with a fine mesh in the corner. The boundary temperatures are the same as in
Figure 3-6. We wish to calculate the nodal temperatures and compare with the previous
solution. Note the symmetry of the problem: T1 = T2, T3 = T4, etc.

Figure Example 3-11

1 2

3 4

5 6 7 7

8 9 10 10

11 12

13 14

∆x

∆x

∆y

3
500˚C

100˚C

100˚C

100˚C

∆y
3
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� Solution
Nodes 5, 6, 8, and 9 are internal nodes with �x = �y and have nodal equations in the
form of Equation (3-24). Thus,

600 + T6 + T8 − 4T5 = 0

500 + T5 + T7 + T9 − 4T6 = 0

100 + T5 + T9 + T11 − 4T8 = 0

T8 + T6 + T10 + T12 − 4T9 = 0

For node 7 we can use a resistance formulation and obtain

1/R7−6 = k

1/R7−500◦ = k(�x/6 + �x/2)
�y/3

= 2k

1/R7−10 = 2k

and we find

1000 + T6 + 2T10 − 5T7 = 0

Similar resistances are obtained for node 10.

1/R10−9 = k

1/R10−7 = 2k = 1/R10−1

so that

2T7 + T9 + 2T1 − 5T10 = 0

For node 1,

1/R1−12 = k(�y/6 + �y/2)
�x/3

= 2k

1/R1−3 = k(�x/6 + �x/2)
�y

= 2k/3

1/R1–10 = 2k

and the nodal equation becomes

3T12 + 3T10 + T3 − 7T1 = 0

For node 11,

1/R11−100◦ = 1/R11−12 = k(�y/6 + �y/2)
�x/3

= 2k

1/R11–8 = k

1/R11–13 = k(�x/3)
�y

= k/3

and the nodal equation becomes

600 + 6T12 + 3T8 + T13 − 16T11 = 0

Similarly, the equation for node 12 is

3T9 + 6T11 + 6T1 + T14 − 16T12 = 0
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For node 13,

1/R13−100◦ = k �y
�x/3

= 3k = 1/R13−14

1/R13−11 = 1/R13−100 = k/3

and we obtain

1000 + 9T14 + T11 − 20T13 = 0

Similarly for node 14,

100 + 9T13 + 9T3 + T12 − 20T14 = 0

Finally, from resistances already found, the nodal equation for node 3 is

200 + 9T14 + 2T1 − 13T3 = 0

We choose to solve the set of equations by the Gauss-Seidel iteration technique and
thus write them in the form Ti = f (Tj ). The solution was set up on a computer with all
initial values for the Ti ’s taken as zero. The results of the computations are shown in the
following table.

Number of iterations

Node 2 10 20 30 50

1 59.30662 232.6668 247.1479 247.7605 247.7875
2 59.30662 232.6668 247.1479 247.7605 247.7875
3 50.11073 139.5081 147.2352 147.5629 147.5773
4 50.11073 139.5081 147.2352 147.5629 147.5773
5 206.25 288.358 293.7838 294.0129 294.023
6 248.75 359.025 366.9878 367.3243 367.3391
7 291.45 390.989 398.7243 399.0513 399.0657
8 102.9297 200.5608 208.4068 208.7384 208.753
9 121.2334 264.2423 275.7592 276.2462 276.2677

10 164.5493 302.3108 313.5007 313.974 313.9948
11 70.95459 156.9976 164.3947 164.7076 164.7215
12 73.89051 203.6437 214.5039 214.9634 214.9836
13 70.18905 115.2635 119.2079 119.3752 119.3826
14 62.82942 129.8294 135.6246 135.8703 135.8811

Note that these solutions for T1 = T2 = 247.79◦C and T3 = T4 = 147.58◦C are somewhat
below the values of 250◦C and 150◦C obtained when only four nodes were employed,
but only modestly so.

Three-Dimensional Numerical Formulation EXAMPLE 3-12

To further illustrate the numerical formulation, consider the simple three-dimensional block
shown in Figure Example 3-12A. The block has dimensions of 3 × 4 × 4 cm with the front
surface exposed to a convection environment with T∞ = 10◦C and h = 500 W/m2 ·◦ C. The
four sides are maintained constant at 100◦C and the back surface is insulated. We choose
�x = �y = �z = 1 cm and set up the nodes as shown. The front surface has nodes 11,
12, 13, 14, 15, 16; the next �z nodes are 21, 22, 23, 24, 25, 26 and so on. We shall use
the resistance formulation in the form of Equation (3-32) to set up the nodal equations.
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Figure Example 3-12A Schematic.
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� Solution
All of the interior nodes for z-planes 2, 3, 4 have resistances of

1/R = kA/�x = (2)(0.01)2/0.01 = 0.02 = 1/R11−21 = 1/R21−22, etc.

The surface conduction resistances for surface z-plane 1 are

1/R11−12 = kA/�x = (2)(0.01)(0.01/2)/0.01 = 0.01 = 1/R11−14, etc.

The surface convection resistances are

1/R11−∞ = hA = (500)(0.01)2 = 0.05

For surface nodes like 11 the
∑

(1/Ri j ) term in Equation (3-32) becomes∑
(1/R11− j ) = (4)(0.01) + 0.02 + 0.05 = 0.11

while, for interior nodes, we have∑
(1/R21− j ) = (6)(0.02) = 0.12

For the insulated back surface nodes∑
(1/R51− j ) = (4)(0.01) + (0.02) = 0.06

There are 30 nodes in total; 6 in each z-plane. We could write the equations for all of
them but prefer to take advantage of the symmetry of the problem as indicated in the
figure. Thus,

T11 = T13 = T14 = T16 and T12 = T15, etc.

We may then write the surface nodal equations as

T11 = [0.05T∞ + 0.02T21 + (0.01)(100 + 100 + T14 + T12)]/0.11

T12 = [0.05T∞ + 0.02T22 + (0.01)(100 + T11 + T15 + T13)]/0.11

Inserting T∞ = 10 and simplifying we have

T11 = (2.5 + 0.02T21 + 0.01T12)/0.1

T12 = (1.5 + 0.02T22 + 0.02T11)/0.1

Following the same procedure for the other z-planes we obtain

T21 = (200 + T11 + T31 + T22)/5

T22 = (100 + T12 + T32 + 2T21)/5

T31 = (200 + T21 + T41 + T32)/5

T32 = (100 + T22 + T42 + 2T31)/5

T41 = (200 + T31 + T51 + T42)/5

T42 = (100 + T32 + T52 + 2T41)/5

T51 = (2 + 0.02T41 + 0.01T52)/0.05

T52 = (1 + 0.02T42 + 0.02T51)0.05

Solving the 10 equations gives the following results for the temperatures in each
z-plane.
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z-plane Node 1 Node 2

1 45.9 40.29
2 84.36 80.57
3 95.34 93.83
4 98.49 97.93
5 99.16 98.94

Figure Example 3-12B gives a graphical display of the results, and the behavior is as
expected. The temperature drops as the cooled front surface is approached. Node 2
is cooled somewhat more than node 1 because it is in contact with only a single 100◦

surface.

� Comments
While this is a rather simple three-dimensional example, it has illustrated the utility of
the resistance formulation in solving such problems. As with two-dimensional systems,
variable mesh sizes, heat generation, and variable boundary conditions can be accom-
modated with care and patience.

Remarks on Computer Solutions

It should be apparent by now that numerical methods and computers give the engineer power-
ful tools for solving very complex heat-transfer problems. Many large commercial software
packages are available, and new ones appear with increasing regularity. One characteris-
tic common to almost all heat-transfer software is a requirement that the user understand
something about the subject of heat transfer. Without such an understanding it can become
very easy to make gross mistakes and never detect them at all. We have shown how energy
balances are one way to check the validity of a computer solution. Sometimes common
sense also works well. We know, for example, that a plate will cool faster when air is blown
across the plate than when exposed to still air. Later, in Chapters 5 through 7, we will see
how to quantify these effects and will be able to anticipate what influence they may have on
a numerical solution to a conduction problem. A similar statement can be made pertaining
to radiation boundary conditions, which will be examined in Chapter 8. These develop-
ments will give the reader a “feel” for what the effects of various boundary conditions
should be and insight about whether the numerical solution obtained for a problem appears
realistic. Up to now, boundary conditions have been stipulated quantities, but experienced
heat-transfer practitioners know that they are seldom easy to determine in the real world.

3-9 ELECTRICAL ANALOGY FOR
TWO-DIMENSIONAL CONDUCTION

Steady-state electric conduction in a homogeneous material of constant resistivity is anal-
ogous to steady-state heat conduction in a body of similar geometric shape. For two-
dimensional electric conduction the Laplace equation applies:

∂2 E

∂x2
+ ∂2 E

∂y2
= 0

where E is the electric potential. A very simple way of solving a two-dimensional heat-
conduction problem is to construct an electrical analog and experimentally determine the
geometric shape factors for use in Equation (3-23). One way to accomplish this is to use
a commercially available paper which is coated with a thin conductive film. This paper
may be cut to an exact geometric model of the two-dimensional heat-conduction system.
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At the appropriate edges of the paper, good electrical conductors are attached to simulate
the temperature boundary conditions on the problem. An electric-potential difference is
then impressed on the model. It may be noted that the paper has a very high resistance in
comparison with the conductors attached to the edges, so that a constant-potential condition
can be maintained at the region of contact.

Once the electric potential is impressed on the paper, an ordinary voltmeter may be used
to plot lines of constant electric potential. With these constant-potential lines available, the
flux lines may be easily constructed since they are orthogonal to the potential lines. These
equipotential and flux lines have precisely the same arrangement as the isotherms and heat-
flux lines in the corresponding heat-conduction problem. The shape factor is calculated
immediately using the method which was applied to the curvilinear squares.

It may be noted that the conducting-sheet analogy is not applicable to problems where
heat generation is present; however, by addition of appropriate resistances, convection
boundary conditions may be handled with little trouble. Schneider [2] and Ozisik [10]
discuss the conducting-sheet method, as well as other analogies for treating conduction
heat-transfer problems, and Kayan [4, 5] gives a detailed discussion of the conducting-sheet
method. Because of the utility of numerical methods, analogue techniques for solution of
heat-transfer problems are largely of historical interest.

3-10 SUMMARY
There is a myriad of analytical solutions for steady-state conduction heat-transfer problems
available in the literature. In this day of computers most of these solutions are of small
utility, despite their exercise in mathematical facilities. This is not to say that we cannot
use the results of past experience to anticipate answers to new problems. But, most of the
time, the problem a person wants to solve can be attacked directly by numerical techniques,
except when there is an easier way to do the job. As a summary, the following suggestions
are offered:

1. When tackling a two- or three-dimensional heat-transfer problem, first try to reduce it
to a one-dimensional problem. An example is a cylinder with length much larger than
its diameter.

2. If possible, select a simple shape-factor model which may either exactly or
approximately represent the physical situation. See comments under items 4 and 5.

3. Seek some simple analytical solutions but, if solutions are too complicated, go
directly to the numerical techniques.

4. In practical problems recognize that convection and radiation boundary conditions are
subject to large uncertainties. This means that, in most practical situations, undue
concern over accuracy of solution to numerical nodal equations is unjustified.

5. In general, approach the solution in the direction of simple to complex, and make use
of checkpoints along the way.

REVIEW QUESTIONS
1. What is the main assumption in the separation-of-variables method for solving

Laplace’s equation?

2. Define the conduction shape factor.

3. What is the basic procedure in setting up a numerical solution to a two-dimensional
conduction problem?
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4. Once finite-difference equations are obtained for a conduction problem, what methods
are available to effect a solution? What are the advantages and disadvantages of each
method, and when would each technique be applied?

5. Investigate the computer software packages that are available at your computer center
for solution of conduction heat-transfer problems.

LIST OF WORKED EXAMPLES
3-1 Buried pipe

3-2 Cubical furnace

3-3 Buried disk

3-4 Buried parallel disks

3-5 Nine-node problem

3-6 Gauss-Seidel calculation

3-7 Numerical formulation with heat generation

3-8 Heat generation with nonuniform nodal elements

3-9 Composite material with nonuniform nodal elements

3-10 Radiation boundary condition

3-11 Use of variable mesh size

3-12 Three-dimensional numerical formulation

PROBLEMS
3-1 Beginning with the separation-of-variables solutions for λ2 = 0 and λ2 < 0 [Equa-

tions (3-9) and (3-10)], show that it is not possible to satisfy the boundary conditions
for the constant temperature at y = H with either of these two forms of solution.
That is, show that, in order to satisfy the boundary conditions

T = T1 at y = 0
T = T1 at x = 0
T = T1 at x = W
T = T2 at y = H

either a trivial or physically unreasonable solution results when either Equation (3-9)
or (3-10) is used.

3-2 Write out the first four nonzero terms of the series solutions given in Equation
(3-20). What percentage error results from using only these four terms at y = H
and x = W/2?

3-3 A horizontal pipe having a surface temperature of 67◦C and diameter of 25 cm
is buried at a depth of 1.2 m in the earth at a location where k = 1.8 W/m · ◦C.
The earth surface temperature is 15◦C. Calculate the heat lost by the pipe per
unit length.

3-4 A 6.0-cm-diameter pipe whose surface temperature is maintained at 210◦C passes
through the center of a concrete slab 45 cm thick. The outer surface temperatures of
the slab are maintained at 15◦C. Using the flux plot, estimate the heat loss from the
pipe per unit length. Also work using Table 3-1.

3-5 A heavy-wall tube of Monel, 2.5-cm ID and 5-cm OD, is covered with a 2.5-cm
layer of glass wool. The inside tube temperature is 300◦C, and the temperature at
the outside of the insulation is 40◦C. How much heat is lost per foot of length? Take
k = 11 Btu/h · ft ·◦F for Monel.
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3-6 A symmetrical furnace wall has the dimensions shown in Figure P3-6. Using the flux
plot, obtain the shape factor for this wall.

Figure P3-6

1 m 3 m

2 m

4 m

3-7 A furnace of 70 by 60 by 90 cm inside dimensions is constructed of a material having
a thermal conductivity of 0.5 Btu/h · ft · ◦F. The wall thickness is 6 in. The inner and
outer surface temperatures are 500 and 100◦F, respectively. Calculate the heat loss
through the furnace wall.

3-8 A cube 35 cm on each external side is constructed of fireclay brick. The wall thickness
is 5.0 cm. The inner surface temperature is 500◦C, and the outer surface temperature
is 80◦C. Compute the heat flow in watts.

3-9 Two long cylinders 8.0 and 3.0 cm in diameter are completely surrounded by a
medium with k = 1.4 W/m · ◦C. The distance between centers is 10 cm, and the
cylinders are maintained at 200 and 35◦C. Calculate the heat-transfer rate per unit
length.

3-10 A 10-cm-diameter sphere maintained at 30◦C is buried in the earth at a place where
k = 1.2 W/m · ◦C. The depth to the centerline is 24 cm, and the earth surface temper-
ature is 0◦C. Calculate the heat lost by the sphere.

3-11 A 20-cm-diameter sphere is totally enclosed by a large mass of glass wool. A heater
inside the sphere maintains its outer surface temperature at 170◦C while the temper-
ature at the outer edge of the glass wool is 20◦C. How much power must be supplied
to the heater to maintain equilibrium conditions?

3-12 A large spherical storage tank, 2 m in diameter, is buried in the earth at a location
where the thermal conductivity is 1.5 W/m · ◦C. The tank is used for the storage of
an ice mixture at 0◦C, and the ambient temperature of the earth is 20◦C. Calculate
the heat loss from the tank.

3-13 The solid shown in Figure P3-13 has the upper surface, including the half-cylinder
cutout, maintained at 100◦C. At a large depth in the solid the temperature is 300 K;
k = 1 W/m · ◦C. What is the heat transfer at the surface for the region where L = 30 cm
and D = 10 cm?

Figure P3-13

D

L
+



P1: GFZ

chapter-03 7925D-Holman August 17, 2001 12:46

116 Problems

3-14 In certain locales, power transmission is made by means of underground cables. In
one example an 8.0-cm-diameter cable is buried at a depth of 1.3 m, and the resistance
of the cable is 1.1 × 10−4 �/m. The surface temperature of the ground is 25◦C, and
k = 1.2 W/m · ◦C for earth. Calculate the maximum allowable current if the outside
temperature of the cable cannot exceed 110◦C.

3-15 A copper sphere 4.0 cm in diameter is maintained at 70◦C and submerged in a large
earth region where k = 1.3 W/m · ◦C. The temperature at a large distance from the
sphere is 12◦C. Calculate the heat lost by the sphere.

3-16 Two long, eccentric cylinders having diameters of 20 and 5 cm respectively are
maintained at 100 and 20◦C and separated by a material with k = 2.5 W/m · ◦C. The
distance between centers is 5.5 cm. Calculate the heat transfer per unit length between
the cylinders.

3-17 Two pipes are buried in the earth and maintained at temperatures of 200 and 100◦C.
The diameters are 9 and 18 cm, and the distance between centers is 40 cm. Calculate
the heat-transfer rate per unit length if the thermal conductivity of earth at this location
is 1.1 W/m · ◦C.

3-18 A hot sphere having a diameter of 1.5 m is maintained at 300◦C and buried in a
material with k = 1.2 W/m · ◦C and outside surface temperature of 30◦C. The depth
of the centerline of the sphere is 3.75 m. Calculate the heat loss.

3-19 A scheme is devised to measure the thermal conductivity of soil by immersing a
long electrically heated rod in the ground in a vertical position. For design purposes,
the rod is taken as 2.5 cm in diameter with a length of 1 m. To avoid improper
alteration of the soil, the maximum surface temperature of the rod is 55◦C while the
soil temperature is 10◦C. Assuming a soil conductivity of 1.7 W/m · ◦C, what are the
power requirements of the electric heater in watts?

3-20 Two pipes are buried in an insulating material having k = 0.8 W/m · ◦C. One pipe is
10 cm in diameter and carries a hot fluid at 300◦C while the other pipe is 2.8 cm in
diameter and carries a cool fluid at 15◦C. The pipes are parallel and separated by a
distance of 12 cm on centers. Calculate the heat-transfer rate between the pipes per
meter of length.

3-21 At a certain location the thermal conductivity of the earth is 1.5 W/m · ◦C. At this
location an isothermal sphere having a temperature of 5◦C and a diameter of 2.0 m
is buried at a centerline depth of 5.0 m. The earth temperature is 25◦C. Calculate the
heat lost from the sphere.

3-22 Two parallel pipes are buried very deep in the earth at a location where they are in
contact with a rock formation having k = 3.5 W/m·◦C. One pipe has a diameter of
20 cm and carries a hot fluid at 120◦C while the other pipe has a diameter of 40 cm
and carries a cooler fluid at 20◦C. The distance between centers of the pipes is 1.0 m
and both pipes are very long in respect to their diameters and spacing. Calculate the
conduction heat transfer between the two pipes per unit length of pipe. Express as
W/m length.

3-23 People are sometimes careless at universities and bury steam pipes in the earth without
insulation. Consider a 10-cm pipe carrying steam at 150◦C buried at a depth of 23 cm
to centerline. The buried length is 100 m. Assuming that the earth thermal conductivity
is 1.2 W/m2 · ◦C and the surface temperature is 15◦C, estimate the heat lost from the
pipe.

3-24 Two parallel pipes 5 cm and 10 cm in diameter are totally surrounded by loosely
packed asbestos. The distance between centers for the pipes is 20 cm. One pipe
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carries steam at 110◦C while the other carries chilled water at 3◦C. Calculate the heat
lost by the hot pipe per unit length.

3-25 A long cylinder has its surface maintained at 135◦C and is buried in a material having
a thermal conductivity of 15.5 W/m · ◦C. The diameter of the cylinder is 3 cm and
the depth to its centerline is 5 cm. The surface temperature of the material is 46◦C.
Calculate the heat lost by the cylinder per meter of length.

3-26 A 2.5-m-diameter sphere contains a mixture of ice and water at 0◦C and is buried
in a semi-infinite medium having a thermal conductivity of 0.2 W/m · ◦C. The top
surface of the medium is isothermal at 30◦C and the sphere centerline is at a depth
of 8.5 m. Calculate the heat lost by the sphere.

3-27 An electric heater in the form of a 50-by-100-cm plate is laid on top of a semi-infinite
insulating material having a thermal conductivity of 0.74 W/m · ◦C. The heater plate is
maintained at a constant temperature of 120◦C over all its surface, and the temperature
of the insulating material a large distance from the heater is 15◦C. Calculate the heat
conducted into the insulating material.

3-28 A small furnace has inside dimensions of 60 by 70 by 80 cm with a wall thickness
of 5 cm. Calculate the overall shape factor for this geometry.

3-29 A 15-cm-diameter steam pipe at 150◦C is buried in the earth near a 5-cm pipe
carrying chilled water at 5◦C. The distance between centers is 15 cm and the thermal
conductivity of the earth at this location may be taken as 0.7 W/m · ◦C. Calculate the
heat lost by the steam pipe per unit length.

3-30 Derive an equation equivalent to Equation (3-24) for an interior node in a three-
dimensional heat-flow problem.

3-31 Derive an equation equivalent to Equation (3-24) for an interior node in a one-
dimensional heat-flow problem.

3-32 Derive an equation equivalent to Equation (3-25) for a one-dimensional convection
boundary condition.

3-33 Considering the one-dimensional fin problems of Chapter 2, show that a nodal equa-
tion for nodes along the fin in Figure P3-33 may be expressed as

Tm

[
h P(�x)2

k A
+ 2

]
− h P(�x)2

k A
T∞ − (Tm−1 + Tm+1) = 0

Figure P3-33

∆x

∆x

m − 1 m m + 1

T∞

B
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e

3-34 Show that the nodal equation corresponding to an insulated wall shown in Figure
P3-34 is

Tm,n+1 + Tm,n−1 + 2Tm−1,n − 4Tm,n = 0
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Figure P3-34
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3-35 For the insulated corner section shown in Figure P3-35, derive an expression for the
nodal equation of node (m, n) under steady-state conditions.

Figure P3-35

Insulated
surfaces m, n m + 1, n

m, n – 1 m + 1, n – 1

3-36 Derive the equation in Table 3-2f.

3-37 Derive an expression for the equation of a boundary node subjected to a constant heat
flux from the environment. Use the nomenclature of Figure 3-7.

3-38 Set up the nodal equations for a modification of Example 3-7 in which the left half of
the wire is insulated and the right half is exposed to a connection environment with
h = 200 W/m2 · ◦C and T = 20◦C.

3-39 In a proposed solar-energy application, the solar flux is concentrated on a 5-cm-OD
stainless-steel tube [k = 16 W/m · ◦C] 2 m long. The energy flux on the tube sur-
face is 20,000 W/m2, and the tube wall thickness is 2 mm. Boiling water flows
inside the tube with a convection coefficient of 5000 W/m2 · ◦C and a temper-
ature of 250◦C. Both ends of the tube are mounted in an appropriate support-
ing bracket, which maintains them at 100◦C. For thermal-stress considerations the
temperature gradient near the supports is important. Assuming a one-dimensional
system, set up a numerical solution to obtain the temperature gradient near the
supports.

3-40 An aluminum rod 2.5 cm in diameter and 15 cm long protrudes from a wall maintained
at 300◦C. The environment temperature is 38◦C. The heat-transfer coefficient is
17 W/m2 · ◦C. Using a numerical technique in accordance with the result of Problem
3-33, obtain values for the temperature along the rod. Subsequently obtain the heat
flow from the wall at x = 0. Hint: The boundary condition at the end of the rod may
be expressed by

Tm

[
h �x

k
+ h P(�x)2

2k A
+ 1

]
− T∞

[
h �x

k
+ h P(�x)2

2k A

]
− Tm−1 = 0

where m denotes the node at the tip of the fin. The heat flow at the base is

qx = 0 = −k A

�x
(Tm+1 − Tm)

where Tm is the base temperature and Tm+1 is the temperature of the first increment.

3-41 Repeat Problem 3-40, using a linear variation of heat-transfer coefficient between
base temperature and the tip of the fin. Assume h = 28 W/m2 · ◦C at the base and
h = 11 W/m2 · ◦C at the tip.
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3-42 For the wall in Problem 3-6 a material with k = 1.4 W/m · ◦C is used. The inner
and outer wall temperatures are 650 and 150◦C, respectively. Using a numerical
technique, calculate the heat flow through the wall.

3-43 Repeat Problem 3-42, assuming that the outer wall is exposed to an environment at
38◦C and that the convection heat-transfer coefficient is 17 W/m2 · ◦C. Assume that
the inner surface temperature is maintained at 650◦C.

3-44 Repeat Problem 3-4, using the numerical technique.

3-45 In the section illustrated in Figure P3-45, the surface 1-4-7 is insulated. The convection
heat transfer coefficient at surface 1-2-3 is 28 W/m2 · ◦C. The thermal conductivity
of the solid material is 5.2 W/m · ◦C. Using the numerical technique, compute the
temperatures at nodes 1, 2, 4, and 5.

Figure P3-45

1 4 7
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3 6 9
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Insulated

30 cm

T    = 0˚C

h = 28 W/m2 • ˚C

T7 = T8 = T9 = 38˚C

T3 = T6 = 10˚C

∞

3-46 A glass plate 3 by 12 by 12 in [k = 0.7 W/m · ◦C] is oriented with the 12 by 12
face in a vertical position. One face loses heat by convection to the surroundings at
70◦F. The other vertical face is placed in contact with a constant-temperature block
at 400◦F. The other four faces are insulated. The convection heat-transfer coefficient
varies approximately as

hx = 0.22(Ts − T∞)1/4x−1/4 Btu/h · ft · ◦F

where Ts and T∞ are in degrees Fahrenheit, Ts is the local surface temperature, and
x is the vertical distance from the bottom of the plate, measured in feet. Determine
the convection heat loss from the plate, using an appropriate numerical analysis.

3-47 In Figure P3-47, calculate the temperatures at points 1, 2, 3, and 4 using the numerical
method.

Figure P3-47

700˚C

500˚C

400˚C100˚C

4 1

2 3
3-48 For the block shown in Figure P3-48, calculate the steady-state temperature distribu-

tion at appropriate nodal locations using the numerical method. k = 3.2 W/m · ◦C.

Figure P3-48
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3-49 The composite strip in Figure P3-49 is exposed to the convection environment at
300◦C and h = 40 W/m2 · ◦C. The material properties are kA = 20 W/m · ◦C, kB =
1.2 W/m · ◦C, and kC = 0.5 W/m · ◦C. The strip is mounted on a plate maintained at
the constant temperature of 50◦C. Calculate the heat transfer from the strip to plate
per unit length of strip. Assume two-dimensional heat flow.

Figure P3-49

T    = 300˚C

A

B

C T = 50˚C 2.0 cm

1.5 cm

0.5 cm

6.0 cm

∞

3-50 The fin shown in Figure P3-50 has a base maintained at 300◦C and is exposed to
the convection environment indicated. Calculate the steady-state temperatures of the
nodes shown and the heat loss if k = 1.0 W/m · ◦C.

Figure P3-50
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3-51 Calculate the steady-state temperatures for nodes 1 to 16 in Figure P3-51. Assume
symmetry.

Figure P3-51
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3-52 Calculate the steady-state temperatures for nodes 1 to 9 in Figure P3-52.

Figure P3-52
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1 2
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4 5 6
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∆x = ∆y = 25 cm
k = 2.3 W/m •˚C

3-53 Calculate the steady-state temperatures for nodes 1 to 6 in Figure P3-53.

Figure P3-53

1 2

h = 12 W/m2 •˚C
T∞ = 15˚C

T = 50˚C T = 50˚C
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3 4

5 6

∆x = ∆y = 25 cm
k = 1.5 W/m •˚C

3-54 Calculate the temperatures for the nodes indicated in Figure P3-54. The entire outer
surface is exposed to the convection environment and the entire inner surface is at
a constant temperature of 300◦C. Properties for materials A and B are given in the
figure.
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Figure P3-54
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 kB = 40 W/m •˚C
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13T = 300˚C 14 15

A

B

T∞ = 10˚C
h = 125 W/m2 •˚C

3-55 A rod having a diameter of 2 cm and a length of 10 cm has one end maintained at 200◦C
and is exposed to a convection environment at 25◦C with h = 40 W/m2 · ◦C. The rod
generates heat internally at the rate of 50 MW/m3 and the thermal conductivity is
35 W/m · ◦C. Calculate the temperatures of the nodes shown in Figure P3-55 assuming
one-dimensional heat flow.

Figure P3-55

1 2 3 4 5

∆x = 2 cm

2 cm

T
=

20
0˚

C

h = 40 W/m2 • C

3-56 Calculate the steady-state temperatures of the nodes in Figure P3-56. The entire outer
surface is exposed to the convection environment at 20◦C and the entire inner surface
is constant at 500◦C. Assume k = 0.2 W/m · ◦C.

Figure P3-56
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3-57 Calculate the steady-state temperatures for the nodes indicated in Figure P3-57.

Figure P3-57
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3-58 The two-dimensional solid shown in Figure P3-58 generates heat internally at the
rate of 90 MW/m2. Using the numerical method calculate the steady-state nodal
temperatures for k = 20 W/m · ◦C.

Figure P3-58
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3-59 Two parallel disks having equal diameters of 30 cm are maintained at 120◦C and
34◦C. The disks are spaced a distance of 80 cm apart, on centers, and immersed in
a conducting medium having k = 3.4 W/m·◦C. Assuming that the disks exchange
heat only on the sides facing each other, calculate the heat lost by the hotter disk,
expressed in watts.

3-60 The half-cylinder has k = 20 W/m · ◦C and is exposed to the convection environment
at 20◦C. The lower surface is maintained at 300◦C. Compute the temperatures for
the nodes shown in Figure P3-60 and the heat loss for steady state.

Figure P3-60
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3-61 A tube has diameters of 4 mm and 5 mm and a thermal conductivity 20 W/m2 · ◦C.
Heat is generated uniformly in the tube at a rate of 500 MW/m3 and the outside
surface temperature is maintained at 100◦C. The inside surface may be assumed to
be insulated. Divide the tube wall into four nodes and calculate the temperature at
each using the numerical method. Check with an analytical solution.

3-62 Repeat Problem 3-61 with the inside of the tube exposed to a convection condition
with h = 40 W/m2 · ◦C. Check with an analytical calculation.

3-63 Rework Problem 3-51 with the surface absorbing a constant heat flux of 300 W/m2

instead of the convection boundary condition. The bottom surface still remains at
200◦C.

3-64 Rework Problem 3-54 with the inner surface absorbing a constant heat flux of
300 W/m2 instead of being maintained at a constant temperature of 300◦C.

3-65 Rework Problem 3-58 with the surface marked at a constant 100◦C now absorbing a
constant heat flux of 500 W/m2. Add nodes as necessary.

3-66 The tapered aluminum pin fin shown in Figure P3-66 is circular in cross section with
a base diameter of 1 cm and a tip diameter of 0.5 cm. The base is maintained at 200◦C
and loses heat by convection to the surroundings at T∞ = 10◦C, h = 200 W/m2 · ◦C.
The tip is insulated. Assume one-dimensional heat flow and use the finite-difference
method to obtain the nodal equations for nodes 1 through 4 and the heat lost by the
fin. The length of the fin is 6 cm.

Figure P3-66

1 432
T0 = 200˚C

Insulated

3-67 Write the nodal equations 1 through 7 for the symmetrical solid shown in Figure
P3-67. �x = �y = 1 cm.

Figure P3-67

T = 100˚C

3 4 5 6 7

1 2

h, T∞

Insulated

3-68 Obtain the temperature for nodes 1 through 6 shown in Figure P3-68; �x = �y =
1 cm.

Figure P3-68
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3-69 Write the nodal equations for nodes 1 through 9 shown in Figure P3-69; �x = �y =
1 cm.

Figure P3-69

T = 100˚C

T = 50˚CInsulated

Constant
heat flux q�A = q""

1 2 3

4 5 6

7 8 9

3-70 Write the nodal equations, for nodes 1 through 12 shown in Figure P3-70. Express
the equations in a format for Gauss-Seidel iteration.

Figure P3-70
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3-71 Sometimes a square grid is desired even for a circular system. Consider the quad-
rant of a circle shown in Figure P3-71 with r = 10 cm. �x = �y = 3 cm and k =
10 W/m · ◦C. Write the steady-state nodal equations for nodes 3 and 4. Make use of
Tables 3-2 and 3-4.

Figure P3-71

7

3

1

4 6

5

2

h = 30 W�m2 • ˚C, T∞ = 20˚C

r = 10 cm
∆x = ∆y = 3 cm

3-72 Taking Figure P3-72 as a special case of Table 3-2( f ), write the nodal equations for
nodes (m, n) and 2 for the case of �x = �y.
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Figure P3-72
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3-73 Repeat Problem 3-72 for a slanted surface which is insulated, i.e., h = 0.

3-74 If the slanted surface of Problem 3-72 is isothermal at T∞, what is the nodal equation
for node (m, n)?

3-75 The slanted intersection shown in Figure P3-75 involves materials A and B. Write
steady-state nodal equations for nodes 3, 4, 5, and 6 using Table 3-2( f and g) as a
guide.

Figure P3-75
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3-76 A horizontal plate, 25 by 50 cm, is maintained at a constant temperature of 78◦C and
buried in a semi-infinite medium at a depth of 5 m. The medium has an isothermal
surface maintained at 15◦C and a thermal conductivity of 2.8 W/m·◦C. Calculate the
heat lost by the plate.

3-77 A cube 20 cm on a side is maintained at 80◦C and buried in a large medium at 10◦C
with a thermal conductivity of 2.3 W/m · ◦C. Calculate the heat lost by the cube.
How does this compare with the heat which would be lost by a 20-cm-diameter
sphere? Compare these heat transfers on a unit-volume basis.

3-78 A long horizontal cylinder having a diameter of 10 cm is maintained at a temperature
of 100◦C and centered in a 30-cm-thick slab of material for which k = W/m · ◦C. The
outside of the slab is at 20◦C. Calculate the heat lost by the cylinder per unit length.

3-79 Work Problem 3-78 using the flux plot.
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3-80 A horizontal plate 20 by 150 cm is buried in a large medium at a depth of 2.0 m and
maintained at 50◦C. The surface of the medium is at 10◦C and has k = 1.5 W/m · ◦C.
Calculate the heat lost by the plate.

3-81 A thin disk 10 cm in diameter is maintained at 75◦C and placed on the surface of a large
medium at 15◦C with k = 3 W/m · ◦C. Calculate the heat conducted into the medium.

3-82 Repeat Problem 3-81 for a square 10 cm on a side. Compare the heat transfers on
a per unit area basis.

3-83 A hot steam pipe 10 cm in diameter is maintained at 200◦C and centered in a square
mineral-fiber insulation 20 cm on a side. The outside surface temperature of the
insulation is 35◦C. Calculate the heat lost by a 20-m length of pipe if the thermal
conductivity of the insulation can be taken as 50 mW/m · ◦C.

3-84 A pipe having a diameter of 10 cm passes through the center of a concrete slab
having a thickness of 70 cm. The surface temperature of the pipe is maintained at
100◦C by condensing steam while the outer surfaces of the concrete are at 24◦C.
Calculate the heat lost by the pipe per meter of length.

3-85 Consider a circumferential fin of rectangular profile as shown in Figure 2-12. Set
up nodal equations for a fin of thickness t , heat transfer coefficient h, thermal
conductivity k, and heat generation rate q as a function of radial coordinate r ,
taking increments of �r . Write the nodal equations for the node adjacent to the base
temperature T0, a node in the middle of the fin, and the node at the end of the fin.

3-86 Set up a nodal equation for the geometry of Problem 2-117, using increments in the
height of the truncated cone as the one-dimensional variable. Then work the problem
with the numerical method and compare with the one-dimensional analytical solution.

3-87 Set up nodal equations for the geometry of Problem 2-116, using increments in an
angle θ as the one-dimensional variable. Then work the problem using the numerical
method and compare with the one-dimensional analytical solution.

3-88 A cube 30 km on a side is buried in an infinite medium with a thermal conductivity
of 1.8 W/m · ◦C. The surface temperature of the cube is 30◦C while the temperature
of the medium is 10◦C. Calculate the heat lost by the cube.

3-89 A thin horizontal disk having a diameter of 15 cm is maintained at a constant surface
temperature of 87◦C and buried at a depth of 20 cm in a semi-infinite medium with
an adiabatic surface. The thermal conductivity of the medium is 2.7 W/m ·◦C and
the temperature of the medium a large distance away from the disk (not the adiabatic
surface temperature) is 13◦C. Calculate the heat lost by the disk in watts.

3-90 A copper rod has an internal heater that maintains its surface temperature at 50◦C
while it is buried vertically in a semi-infinite medium. The rod is 2 cm in diameter
and 40 cm long and the isothermal surface of the medium is at 20◦C. Calculate the
heat lost by the rod if the thermal conductivity of the medium is 3.4 W/m ·◦C.

3-91 Rework Problem 2-116, using a numerical approach with five nodes operating in
increments of the radial angle θ , and compare with the analytical results of Problem
2-116.

Design-Oriented Problems

3-92 A liner of stainless steel (k = 20 W/m · ◦C), having a thickness of 3 mm, is placed on
the inside surface of the solid in Problem 3-56. Assuming now that the inside surface
of the stainless steel is at 500◦C, calculate new values for the nodal temperatures in
the low-conductivity material. Set up your nodes in the stainless steel as necessary.
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3-93 A basement for a certain home is 4 × 5 m with a ceiling height of 3 m. The walls
are concrete having a thickness of 10 cm. In the winter the convection coefficient on
the inside is 10 W/m2 · ◦C and the soil on the outside has k = 1.7 W/m · ◦C. Analyze
this problem and determine an overall heat transfer coefficient U defined by qloss =
U Ainside(Tinside − Tsoil). Determine the heat loss when Tinside = 26◦C and Tsoil = 15◦C.

3-94 A groundwater heat pump is a refrigeration device that rejects heat to the ground
through buried pipes instead of to the local atmosphere. The heat rejection rate for
such a machine at an Oklahoma location is to be 22 kW in a location where the
ground temperature at depth is 17◦C. The thermal conductivity of the soil at this
location may be taken as 1.6 W/m · ◦C. Water is to be circulated through a length of
horizontal buried pipe or tube with the water entering at 29◦C and leaving at 23.5◦C.
The convection coefficient on the inside of the pipe is sufficiently high that the inner
pipe wall temperature may be assumed to be the same as the water temperature.
Select an appropriate pipe/tube material, size, and length to accomplish the required
cooling. You may choose standard steel pipe sizes from Table A-11. Standard tubing
or plastic pipe sizes are obtained from other sources. Examine several choices before
making your final selection and give reasons for that selection.

3-95 Professional chefs claim that gas stove burners are superior to electric burners
because of the more uniform heating afforded by the gas flame and combustion prod-
ucts around the bottom of a cooking pan. Advocates of electric stoves note the lack of
combustion products to pollute the air in the cooking area, but acknowledge that gas
heat may be more uniform. Manufacturers of thick-bottomed cookware claim that
their products can achieve uniformity of cooking as good as gas heat because of the
“spreading” of heat through an 8-mm-thick aluminum layer on the bottom of the pan.
You are asked to verify this claim. For the evaluation assume a 200-mm-diameter
pan with an 8-mm-thick aluminum bottom and the interior exposed to boiling water,
which produces h = 1500 W/m2 · ◦C at 1 atm (100◦C). Observe the approximate
spacing for the circular element in an electric burner and devise an appropriate
numerical model to investigate the uniformity-of-heating claim. Consider such
factors as contact resistance between the burner element and the bottom of the
pan, and radiation transfer that might be present. Consider different heating rates
(different burner element temperatures) and their effect. When the study is complete,
make recommendations as to what the cookware manufacturers might prudently
claim for their thick-bottomed product. Discuss uncertainties in your analysis.

3-96 The fin analyses of Section 2-10 assumed one-dimensional heat flows in the fins.
Devise a numerical model similar to that shown in Problem 3-51 to examine the
validity of this assumption. Restrict the analysis to aluminum with k = 200 W/m · ◦C.
Examine several different combinations of fin thickness, fin length, and convection
coefficient to determine the relative effects on temperature variation across the fin
thickness. State conclusions as you think appropriate.

3-97 A small building 5 m wide by 7 m long by 3 m high (inside dimensions) is mounted
on a flat concrete slab having a thickness of 15 cm. The walls of the building are
constructed of concrete also, with a thickness of 7 cm. The inside of the building is
used for cold storage at −20◦C and the outside of the building is exposed to ambient
air at 30◦C, with a convection coefficient of 15 W/m2 · ◦C. The inside convection
coefficient for the building is estimated at 10 W/m2 · ◦C and the floor slab is in
contact with earth having k = 1.8 W/m · ◦C. The earth temperature may be assumed
to be 15◦C. Calculate the heat gained by the building in the absence of any insulating
material on the outside. Next, select two alternative insulation materials for the
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outside of the building from Table 2-1 and/or Table A-3. The insulation objective
is to raise the outside surface temperature of the insulation to 26◦C for the ambient
temperature of 30◦C. The refrigeration system operates in such a manner that 1 kW
will produce 4000 kJ/hr of cooling, and electricity costs $0.085/kWh. Economics
dictates that the insulation should pay for itself in a three-year period. What is the
allowable cost per unit volume of insulation to accomplish this payback objective,
for the two insulating materials selected? Suppose an outside surface temperature of
24◦C is chosen as the allowable value for the insulation. What would the allowable
costs be for a three-year payback in this case? Make your own assumptions as to the
annual hours of operation for the cooling system.
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