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Stability of Closed-loop Systems 

1. Introduction 

    A feedback control system must be stable as a prerequisite for satisfactory control. 
Consequently, it is of considerable practical importance to be able to determine under 
which conditions a control system becomes unstable. For example, what values of the 
PID controller parameters Kc, τI, and τD keep the controller process stable?  

Definition of stability 

    Before we proceed, we introduce the following definition for unconstrained linear 
systems. Notice that the term “unconstrained” is used to refer to the ideal situation where 
there are no physical limits on the output variable.  
Definition of stability. An unconstrained linear system is said to be stable if the output 
response is bounded for all bounded inputs. Otherwise, it is said to be unstable.    

Characteristic equation 

    Consider the general block diagram, which is discussed in the previous chapter. Using 
block diagram algebra that was developed in the previous chapter, we obtain  
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or equivalently, 
LGRGC LoadSP +=                        (2) 

The stability characteristics of the closed-loop response will be determined by the poles 
of the transfer functions GSP and GLoad. These poles are common for both transfer 
functions (because they have common denominator) and are given by the solution of the 
equation  

01 =+ pvmc GGGG                       (3) 

Equation (3) is called the characteristic equation for the generalized feedback system.   
    Let p1, p2,…., pn be the n roots of the characteristic Equation (3):  

)())((1 21 npvmc pspspsGGGG −−−=+ K                    (4) 

Then we can state the following criterion for the stability of a closed-loop system: 
 

 A feedback control system is stable if all the roots of its characteristic equation have 
negative real parts (i.e. are to the left of the imaginary axis).    
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If any root of the characteristic equation is on or to the right of the imaginary axis (i.e. it 
has real part zero or positive), the feedback system is unstable. Figure 1 provides 
graphical interpretation of this stability criterion. The qualitative effects of these roots on 
the transient response of the closed-loop system are shown in Figure 2. The left portion of 
each part of this figure shows representative root locations in the complex plane. The 
corresponding figure on the right shows the contributions these poles make to the closed-
loop response to a step change in the set point. Similar responses would occur for a step 
change in load.   
 

 
 
Figure 1 Stability regions in the complex plane for roots of the characteristic 
equation.  
 
    The root locations also provide an indication of how rapid the transient response will 
be. A real root at s = p1 corresponds to a closed-loop time constant of τ1 = 1/p1. Thus, real 
roots close to the imaginary axis result in slow responses. Similarly, complex roots near 
the imaginary axis correspond to slow response modes. The further the complex roots are 
away from the real axis, the more oscillatory the transient response will be.     
 
Remarks 
    The product pvmcOL GGGGG =  is called open-loop transfer function because it relates 

the measurement indication ym to the set point if the feedback loop is broken just before 
the comparator     

spOLm yGy =                            (5)        
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    Note that the same characteristic equation occurs for both load and set-point changes 
since the term, 1+GOL, appears in the denominator of both terms in Equation (1). Thus, if 
the closed-loop system is stable for load disturbances, it will also be stable for set-point 
changes.    
 

 
 
Figure 2 Contributions of characteristic equation roots to closed-loop response.   
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Example 1 

Consider a process with the following transfer functions:  
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Determine the range of Kc values that result in a stable closed-loop system. 
 
Solution 
The corresponding characteristic equation is 
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which has the root 

cKp 101−=  

The system is stable if p<0 (i.e. Kc > 1/10).  

Example 2 

Consider a process with the following transfer functions:  
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Determine weather the PI controller can stabilize the system.   
Solution 
The corresponding characteristic equation is 
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The equation above yields 
01001022 23 =+++ sss  

with roots -7.185, 2.59 + 11.5j and 2.59 – 11.5j. The closed-loop system is unstable 
because two roots of the characteristic equation have positive real parts.   

2. Routh Stability Criterion 

    The criterion of stability for closed-loop systems does not require calculation of the 
actual values of the roots of the characteristic polynomial. It only requires that we know 
if any root is to the right of the imaginary axis. Routh Stability Criterion is an analytical 
technique for determining whether any roots of the polynomial have positive real parts. 
This approach can be applied only to systems whose characteristic equations are 
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polynomials in s. Thus, the Routh Stability Criterion is not directly applicable to systems 
containing time delays, since an e-θs term appears in the characteristic equation.    
    The Routh Stability Criterion is based on a characteristic equation that has the form   
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We arbitrarily assume that an > 0. If an < 0, we multiply Equation 6 by -1 to generate a 
new equation that satisfies this condition.  
 
First test. A necessary (but not sufficient) condition for stability is that all of the 
coefficients ( onn aaaa ,,,, 11 K− ) in the characteristic equation must be positive. If any 

coefficient is negative or zero, then at least one root of the characteristic equation lies on 
the right of, or on, the imaginary axis, and the system is unstable.  
 
Second test. If all of the coefficients are positive, we can construct the following Routh 
array:     
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Routh Stability Criterion. A necessary and sufficient condition for all roots of the 
characteristic equation to have negative real parts is that all of the elements in the left 
column of the Routh array are positive.   
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Remarks 
    The number of sign changes in the elements of the first column is equal to the number 
of roots to the right of the imaginary axis.  

Example 3 

Determine the stability of a system that has the characteristic equation 
0135 234 =+++ sss  

 
Solution 
Since the s term is missing, its coefficient is zero. Thus, the system is unstable (First 
test).   

Example 4 

Find the values of controller gain Kc that make the following feedback control system 
stable.   
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Solution 
The characteristic equation is 

0181710 23 =++++ cKsss                       (7)        

All coefficients are positive provided that 1+Kc > 0 or Kc > -1. The Routh array is   
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To have a stable system, each element in the left column of the Routh array must be 
positive. Element b1 will be positive if Kc > 7.41/0.588 = 12.6. Similarly, c1 will be 
positive if Kc > -1. Thus, we conclude that the system will be stable if   
-1 < Kc < 12.6         
This example illustrates that stability limits for controller parameters can be derived 
analytically using the Routh array; that is, it is not necessary to compute the roots of the 
characteristic equation nor specify a numerical value for Kc before performing the 
stability analysis.    

3. Direct substitution method  

    Direct substitution method is a convenient method for determining the range of 
controller parameters for which the closed-loop response is stable. The method is based 
on the fact that that the roots of the characteristic equation vary continuously with the 
loop parameters. Consequently, at the point of instability, at least one of the roots must lie 
on the imaginary axis of the complex plane as they cross from the left-half plane to the 
right. This means that the roots are pure imaginary numbers at the verge of instability. At 
this point the loop is said be marginally stable. This means that, at this point, the 
characteristic equation must have a pair of pure imaginary roots at ujs ω±=2,1 . The 

frequency ωu with which the loop oscillates is the ultimate frequency. The controller gain 
at which this point of marginal instability is reached is called the ultimate gain, Ku. At a 
gain just below the ultimate, the loop oscillates with decaying amplitude, while at a gain 
just above the ultimate gain, the amplitude of oscillations increases with time. At the 
point of marginal stability, the amplitude of oscillation remains constant with time 
(Figure 3).            
    The ultimate period of oscillation Tu is related to the ultimate frequency, ωu, in rad/s, 
by 

uuT ωπ2=                                    (8)   

    The method of direct substitution consists of substituting ujs ω= in the characteristic 

equation. This results in a complex equation that can be converted into two simultaneous 
equations 
     Real part = 0 
       Imaginary part = 0 
From these we can solve for two unknowns: one is the ultimate frequency ωu, the other is 
any of the parameters of the loop, usually the controller gain at the point of marginal 
stability or ultimate gain. Generally, the closed-loop response is unstable when the 
controller gain is greater than the ultimate gain.   
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Example 5 

    Use the direct substitution method to determine Ku for the system described in 
Example 4.  
 
Solution 
Substitute ujs ω= and Kc = Ku into Equation (7): 
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Solve both equations  
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Thus, we conclude that Kc < 12.6 for stability. Equation (9c) indicates that at the stability 
limit, Kc = Ku = 12.6, a sustained oscillation occurs that has a frequency of ω = 0.894 
rad/min., if the time constants have units of minutes. The corresponding period = 7.03 
min.  
 

Figure 3 Responses of closed-
loop with the controller gain 
less than (a), equal to (b), and 
grater than (c) the ultimate 
gain.
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Performance criteria for closed-loop systems  

Introduction 

    The function of a feedback control system is to ensure that the closed-loop system has 
desirable dynamic and steady state response characteristics. Ideally, we would like the 
closed-loop system to satisfy the following performance criteria: 
 
1. The closed-loop system must be stable. 
2. The effects of disturbances are minimized. 
3. Rapid, smooth responses to set point changes are obtained. 
4. Offset is eliminated. 
5. Excessive control action is avoided. 
6. The control system is robust.  
 
    In typical control problems, it is not possible to achieve all of these goals since they 
involve inherent conflicts and trade-offs. For example, PID controller settings that 
minimize the effects of disturbances tend to produce large overshoots for set point 
changes. On the other hand, if the controller is adjusted to provide a rapid, smooth 
response to a set point change, it usually results in sluggish control for disturbances. 
Thus, the trade-off is required in selecting controller settings that are satisfactory for both 
load and set point changes.   

Design relations for PID controllers 

    In this section we consider some well-known controller design relations that are based 
on a specific model, namely the first-order plus time-delay model, Equation (10).   
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Design relations based on integral error criteria 

    A controller design relations, which is based on performance index that considers the 
entire closed-loop response, are developed. Three performance indices will be considered 
in this course:   

Integral of the absolute value of the error (IAE)  

∫
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)( dtteIAE                    (11) 
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where the error signal e(t) is the difference between the set point and the measurement. 
Notice that for P controller, where offset occurs, the integral given by Equation does not 
converge. In these cases, one can use a modified integrand, which replaces the error 
by )()( tyy −∞ , since this term does approach zero as t goes to infinity.    

Integral of squared error (ISE) 

[ ]∫
∞

=
0

2)( dtteISE                    (12) 

Integral of time-weighted absolute error 

∫
∞
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0

)( dttetITAE                    (13) 

 
A graphical interpretation of the IAE performance index is shown in Figure 4.   
 

 
 
The ISE will penalize the response that has large errors, which usually occur at the 
beginning of a response because the error is squared. The ITAE will penalize a response 
which has errors that persist for a long time. The IAE will treat all errors in a uniform 
manner; thus, it allows larger deviation than ISE. In general, ITAE is the preferred 
integral error criterion since it results in the most conservative controller settings.     

Figure 4 Graphical interpretation 
of IAE.  
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    Design relations that minimize the ITAE performance index are shown in Table 1. 
These relations are based on the first-order plus time-delay model, i.e. Equation (10), and 
the ideal PID controller. Note that the optimal controller settings are different depending 
on whether step responses to load or set point are considered. For load changes, the load 
and process transfer functions are assumed identical.     
 
Table 1. Controller design relations based on ITAE performance index and a first-
order plus time delay model.  

 

Example 6 

For the process model,    
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Compare PI and PID controller settings based on ITAE tuning relations for both load and 
set point changes.    
 
Solution 
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The ITAE settings are shown below: 
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Controller/Design method Kc τI τD 
PI / load 0.423 6.48 - 

PI / set point 0.276 7.39 - 
PID / load 0.654 4.98 1.34 

PID / set point 0.435 9.69 1.13 
 

 
 
Figure 5 Comparison of controllers design using ITAE criteria for (a) set point and 
(b) load changes.   
 
Figure 5 compares the ITAE controllers. Design for load changes results in large 
overshoots for set-point changes, while set-point design produces sluggish responses to 
load disturbances. If set-point changes and load disturbances are both likely to occur, 
then a compromise in the controller settings should be employed.  
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    This example has demonstrated that, in general, integral error criteria for set point 
changes results in more conservative controller settings than for load changes. 

Controller tuning 

    After controller installation, the controller settings must usually be adjusted until 
control performance is considered satisfactory. This activity is referred to as controller 
tuning or field tuning of the controller.  
    In order to save time and effort, it is desirable to have preliminary estimates of 
satisfactory controller settings. A good first guess may be available from experience with 
similar control loops. Alternatively, if a process model is available, integral error 
methods can be employed to calculate controller settings. Field tuning, may still required 
to fine tune the controller, especially if the available information is incomplete or not 
very accurate. 

1. Continuous cycling method 

    This approach has also been referred to as loop tuning or the ultimate gain method. 
This method is described as a closed-loop method because the controller remains in the 
loop as an active controller in automatic mode. A typical experimental approach for PID 
controllers can be summarized as follows: 
 
1. After the process reaches steady state, remove the integral and derivative modes of 

the controller, leaving only proportional control. On some PID controllers, this 
requires that the integral time (τI) be set to its maximum value and the derivative time 
(τD) to its minimum value. 

2. Select a value of proportional gain (Kc), disturb the system, and observe the transient 
response. If the response decays, select a higher value of Kc and again observe the 
response of the system. Continue increasing the gain in small steps until the response 
first exhibits a sustained oscillation, Figure 6. The value of gain and the period of 
oscillation that correspond to the sustained oscillation are the ultimate gain (Kcu) and 
the ultimate period (Pu). In performing the experimental test, it is important that the 
controller output does not saturate. If saturation does occur, then a sustained 
oscillation can result even thought Kc > Kcu. Typical results are shown in Figure 7.  

Definition 1. The ultimate gain Kcu is the largest value of the controller gain Kc that 
results in closed-loop stability when proportional only controller is used.  
Definition 2. The ultimate period Pu is defined as the period of sustained cycling that 
would occur if a proportional controller with gain Kcu were used.     
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3. From the values of Kcu and Pu found in the previous step, use the Ziegler-Nichols 
rules given in Table 19.1 to determine controller settings (Kc, τI, τD). These tuning 
relations were empirically developed to provide a ¼ decay ratio, Figure 8.  

 

 
 
Figure 7 Determination of Kcu using Continuous Cycling Method. 
 
Table 2. Ziegler-Nichols controller settings based on the Continuous Cycling 
Method. 
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Figure 6 Response of 
the loop with the 
controller gain set 
equal to the ultimate 
gain Kcu. Tu is the 
ultimate period.  



Instrumentation & Process Control 

Chapter 6: Stability of Closed-loop Systems                             15 

 
Figure 8 Quarter decay ratio response to disturbance input and to change in set 
point. 

Remarks 

1. Kcu and Pu can be determined by the direct substitution method if the transfer 
functions of all of the components of the loop are known qualitatively. 

2. The quarter decay ratio response is very desirable for disturbance inputs because it 
prevents a large initial deviation from the set point without being too oscillatory. 
However, it is not as desirable for step changes in set point, because it causes a 50 % 

overshoot. This is because the maximum deviation from the new set point in each 
direction is one-half the preceding maximum deviation in the opposite direction, 
Figure 8. This difficulty can easily be corrected by reducing the proportional gain 
from the value predicted by the formulas of Table 2. In fact, the decay ratio is a direct 
function of the controller gain, and can be adjusted at any time by simply changing 
the gain. In other words, if for a given process the quarter decay ratio response is too 
oscillatory, a reduction of the gain will smooth out the response.  

3. Shortcomings: 
3.1. It may be objectionable because the process is pushed to stability limit. 

Consequently, if external disturbances or a change in the process occurs during 
tuning, unstable operation or hazardous situation could occur. 

3.2. This tuning procedure is not applicable to processes that are open-loop unstable 
because such processes are unstable at both high and low values of Kc, but stable 
for intermediate range of values.  

3.3. Some processes do not have an ultimate gain; for example, first-order and 
second-order processes without time delay.    

3.4. The set of tuning parameters necessary to obtain the quarter decay ratio response 
is not unique, except for the case of P controller. 
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3.5. Controller settings in Table 3 should be regarded as first estimates. Subsequent 
fine tuning via trial and error is often required. 

2. Process reaction curve method 

    This is an open-loop method; it is used as an alternative to Z-N method. Figure 9 
shows a typical control loop in which the control action is removed and the loop opened 
for the purpose of introduction a step change (M/s) to the valve. The step response is 
recorded at the output of the measuring element. The step change to the valve is 
conveniently provided by the output from the controller, which is in manual mode. The 
response of the system (including the valve, process, and measuring element) is called the 
process reaction curve. Two different types of process reaction curves are shown in 
Figure 10 for a step change occurring at t = 0. 
 

 
 
Figure 9 Block diagram of a control loop for measurement of the process reaction 
curve.  
 
This method is summarized in the following steps:  
 
1. After the process reaches steady state at the normal level of operation, switch the 

controller to manual.  
2. With the controller in manual, introduce a small step change in the controller output 

that goes to the valve and record the transient, which is the process reaction curve 
(Figure 10). 

3. Draw a straight line tangent to the curve at the point of inflection, as shown in Figure 
10. The intersection of the tangent line with the time axis is the apparent transport lag 
(θ); the apparent first-order time constant (τ) is obtained from:  

      SBu=τ                     (14) 

      where Bu is the steady state “ultimate” value of B and S is the slope of the tangent    
      line. The steady state gain that relates B to M in Figure 9 is given by: 
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Figure 10 Typical process reaction curves: (a) non-self regulating process, (b) self-
regulating process.  
 
      MBK up =                     (15) 

Note that if the process reaction curve has the typical sigmoidal shape shown in Case b 
of Figure 10, the following model usually provides a satisfactory fit:  
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4. Using the values of Kp, τp and θ from step 3, the controller settings are found from the 
relations given in Table 3.  

 
Notice that the settings given in this table were developed to provide closed-loop 
responses with a decay ratio of ¼. 
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Remarks 

The advantages of PRC method: 
 
1. Only a single experimental test is necessary. 
2. It does not require trial and error. 
3. The controller settings are easily calculated. 
 
However, it has several disadvantages: 
 
1. The experimental test is performed under open-loop conditions. Thus, if a significant 

load change occurs during the test, no corrective action is taken and the test results 
may be significantly distorted.  

2. It may be difficult to determine the slope at the inflection point accurately, especially 
if the measurement is noisy and a small recorder chart is used.  

3. The recommended settings in Tables 3 tend to result in oscillatory responses since 
they were developed to provide a 1/4 decay ratio.  

4. The method is not recommended for processes that have oscillatory open-loop 
responses since the process model in Equation (16) will be quite inaccurate.  

Table 3 Cohen and Coon Controller design relations. 
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Example 7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  


