Nyquist Criterion For Stability of Closed Loop System

Prof. N. Puri
ECE Department, Rutgers University

1 Nyquist Theorem

Given a closed loop system:

- n : The order of denominator polynomial $D(s)$;
- $K G(s)=$ Open Loop Transfer Function;
- $D(S)=$ Open Loop Characteristic polynomial with \mathbf{O} unstable roots (unstable open loop poles) and $n-\mathbf{O}$ stable roots;
- $P(s)=D(s)+K N(s)=$ Closed Loop Characteristic polynomial with \mathbf{C} unstable roots (unstable closed loop poles);
- $K G(j \omega)=$ Open Loop frequency response;
- $1+K G(j \omega)=$ Shifted Plot.

The plot of $(1+K G(j \omega))$ as ω varies from $\omega=-\infty$ to $\omega=\infty$ is referred to as "Nyquist Locus" in $(1+K G(j \omega))$ plane. Plot of Nyquist Locus in $(1+K G(j \omega))$ plane determines the stability of the Closed Loop System. Let
$\mathbf{N}=$ number of counter clockwise encirclements of the origin $(0+0 j)$ by the Nyquist Locus as ω varies from $-\infty$ to ∞, in $(1+K G(j \omega))$ plane.

Nyquist Theorem state:

$$
\begin{equation*}
\mathbf{N}=\mathbf{O}-\mathbf{C} \tag{1}
\end{equation*}
$$

So this implies:

- if $\mathbf{C}=0$, the conclusion is:

Feedback control system is stable, if the number of counterclockwise encirclements of the origin in $(1+K G(j \omega)$ plane is equal to the number of open loop unstable poles \mathbf{O}.

- if $\mathbf{O}=0$ and $\mathbf{C}=0$, the conclusion is:

Feedback control system is stable if the Nyquist Locus in $(1+K G(j \omega)$ does not encircle the origin.

Origin in $(1+K G(j \omega))$ transform to $-1+j 0$ point in $K G(j \omega)$ plane.

origin in $(1+K G(j \omega))$ plane
$O,(0,0)$ in $(1+K G(j \omega))$ plane is "Mapped" into $O_{1},(-1,0)$ in $K G(j \omega)$ plane, the point O_{1} is referred to as the critical point.

2 Graphical Interpretation of $G(s)$

- Concept of $G(s)$ as a "Mapping" form s plane to $G(s)$ plane.

A point s in s plane is "Mapped" into a point $G(s)$ in $G(s)$ plane.
Example: Consider function $G(s)=1+s^{2}$, when $s=1+j$, then

$$
G(s)=1+s^{2}=1+(1+j)^{2}=1+1+(-1)+2 j=1+2 j
$$

Point A in s plane has been mapped in B in $G(s)$ plane. Let s be moving on a curve c as $c_{1}, c_{2}, \cdots, c_{K}$, then corresponding points move in $G(s)$ plane along $d_{1}, d_{2}, \cdots, d_{K}$.
Thus the curve c in s plane has been mapped to curve d in $G(s)$ plane via the function $G(s)$.

- $\left.G(s)\right|_{s=j \omega}=G(j \omega)$ implies that s is allowed to take values only in the imaginary axis of the s plane. Thus as ω is varied from $\omega=-\infty$ to $\omega=+\infty$, the whole of the $j \omega$ axis in the s plane is mapped into a locus in the $G(j \omega)$ plane.

- $G(j \omega)$ can be considered as a phaser.

$$
\begin{aligned}
& G(j \omega) \text { Plane }
\end{aligned}
$$

$$
\begin{aligned}
& G(j \omega)=R(\omega)+j X(\omega)=\left[R^{2}(\omega)+X^{2}(\omega)\right]^{\frac{1}{2}} \angle \tan ^{-1} \frac{X(\omega)}{R(\omega)}=A(\omega) \angle \varphi(\omega)
\end{aligned}
$$

And it has the following properties. If given $G_{1}(j \omega), G_{2}(j \omega)$ as

$$
\begin{aligned}
& G_{1}(j \omega)=A_{1}(\omega) \angle \varphi_{1}(\omega)=R_{1}(\omega)+j X_{1}(\omega) \\
& G_{2}(j \omega)=A_{2}(\omega) \angle \varphi_{2}(\omega)=R_{2}(\omega)+j X_{2}(\omega)
\end{aligned}
$$

then

$$
\begin{aligned}
G_{1}(j \omega)+G_{2}(j \omega) & =\left[R_{1}(\omega)+R_{2}(\omega)\right]+j\left[X_{1}(\omega)+X_{2}(\omega)\right] \\
G_{1}(j \omega) G_{2}(j \omega) & =A_{1}(\omega) A_{2}(\omega) \angle\left[\varphi_{1} \omega+\varphi_{2}(\omega)\right] \\
\frac{G_{1}(j \omega)}{G_{2}(j \omega)} & =\frac{A_{1}(\omega)}{A_{2}(\omega)} \angle\left[\varphi_{1} \omega-\varphi_{2}(\omega)\right]
\end{aligned}
$$

3 Proof of Nyquist Criterion

Restate the theorem here:
Given:

- $K G(s)=$ Open Loop Transfer Function with \mathbf{O} unstable poles;
- $H(s)=\frac{K G(s)}{1+K G(s)}=$ Closed Loop Transfer Function with C unstable poles;
- $N=$ number of counterclockwise encirclements of $(-1+j 0)$ point by the locus of $G(j \omega)$, $-\infty<\omega<+\infty$;
- $n=$ degree of $D(s)$.

Nyquist Theorem states that:

$$
\mathbf{C}=-\mathbf{N}+\mathbf{O}
$$

and $\mathbf{C}=0$ implies stability of the closed loop system.
This implies that "For a system to be closed loop stable, the number of encirclements of $(-1+j 0)$ point by the locus of $G(j \omega),-\infty<\omega<+\infty$ in the counterclockwise direction is equal to the number of unstable open loop poles."

Proof:

$$
\begin{gathered}
F(s)=1+K G(s)=1+\frac{K N(s)}{D(s)}=\frac{D(s)+K N(s)}{D(s)}=\frac{P(s)}{D(s)} \\
F(s)=\frac{\prod_{i=1}^{n}\left(s-p_{i c}\right)}{\prod_{k=1}^{n}\left(s-p_{k o}\right)}, \quad F(j \omega)=\frac{\prod_{i=1}^{n}\left(j \omega-p_{i c}\right)}{\prod_{k=1}^{n}\left(j \omega-p_{k o}\right)}
\end{gathered}
$$

$$
F(j \omega)=|F(j \omega)| \angle \varphi_{F}(\omega), \quad \varphi_{F}(\omega)=\sum_{i=1}^{n} \varphi_{i c}(\omega)-\sum_{k-1}^{n} \varphi_{k o}(\omega)
$$

then

$$
\left.\Delta \varphi_{F}(\omega)\right|_{\omega=-\infty} ^{+\infty}=\left.\sum_{i=1}^{n} \Delta \varphi_{i c}(\omega)\right|_{\omega=-\infty} ^{+\infty}-\left.\sum_{k=1}^{n} \Delta \varphi_{k o}(\omega)\right|_{\omega=-\infty} ^{+\infty}
$$

$$
\begin{aligned}
& p \text { in L.H.S. } \\
& (j \omega-p)=|j \omega-p| \angle \varphi_{p}(\omega) \\
& \left.\Delta \varphi_{p}(\omega)\right|_{\omega=-\infty} ^{+\infty}=+\pi
\end{aligned}
$$

s Plane

p in R.H.S.
$\underset{\left.\Delta \varphi_{p}(\omega)\right|_{\omega=-\infty} ^{+\infty}=-\pi}{(j \omega-p \mid} \mid \angle \varphi_{p}(\omega)$

Then for $F(s)=\frac{D(s)+K N(s)}{D(s)}$, it has n zeros and n poles. And it has zeros which are same as Closed Loop poles and has poles which are same as open loop poles.

Now

$$
F(s) \text { has }\left\{\begin{array}{l}
(n-\mathbf{C}) \text { zeros in L.H.S. and } \mathbf{C} \text { zeros in R.H.S.. } \\
(n-\mathbf{O}) \text { poles in L.H.S. and } \mathbf{O} \text { poles in R.H.S.. }
\end{array}\right.
$$

Thus

$$
\begin{align*}
\left.\Delta \varphi_{F}(\omega)\right|_{\omega=-\infty} ^{+\infty} & =\left.\sum_{i=1}^{n} \Delta \varphi_{i c}(\omega)\right|_{\omega=-\infty} ^{+\infty}-\left.\sum_{k=1}^{n} \Delta \varphi_{k o}(\omega)\right|_{\omega=-\infty} ^{+\infty} \\
& =[\pi(n-\mathbf{C})-\pi \mathbf{C}]-[\pi(n-\mathbf{O})-\pi \mathbf{O}]=-2 \pi(\mathbf{C}-\mathbf{O})=2 \pi N \tag{2}
\end{align*}
$$

where

$$
\begin{aligned}
N & =\text { counterclockwise encirclements of origin in }(1+G(j \omega)) \text { plane } \\
& =\text { counterclockwise encirclements of }(-1+j 0) \text { in } G(j \omega) \text { plane }
\end{aligned}
$$

