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1 Nyquist Theorem

Given a closed loop system:
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• n: The order of denominator polynomial D(s);

• KG(s) = Open Loop Transfer Function;

• D(S) = Open Loop Characteristic polynomial with O unstable roots (unstable open
loop poles) and n−O stable roots;

• P (s) = D(s) + KN(s) = Closed Loop Characteristic polynomial with C unstable roots
(unstable closed loop poles);

• KG(jω) = Open Loop frequency response;

• 1 + KG(jω) = Shifted Plot.

The plot of (1 + KG(jω)) as ω varies from ω = −∞ to ω = ∞ is referred to as “ Nyquist
Locus” in (1 + KG(jω)) plane. Plot of Nyquist Locus in (1 + KG(jω)) plane determines the
stability of the Closed Loop System. Let

N = number of counter clockwise encirclements of the origin (0 + 0j) by the

Nyquist Locus as ω varies from −∞ to ∞, in (1 + KG(jω)) plane.

Nyquist Theorem state:
N = O−C (1)

So this implies:
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• if C = 0, the conclusion is:

Feedback control system is stable, if the number of counterclockwise encirclements of
the origin in (1 + KG(jω) plane is equal to the number of open loop unstable poles O.

• if O = 0 and C = 0, the conclusion is:

Feedback control system is stable if the Nyquist Locus in (1+KG(jω) does not encircle
the origin.

Origin in (1 + KG(jω)) transform to −1 + j0 point in KG(jω) plane.
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origin in (1 + KG(jω)) plane

*

O, (0, 0) in (1 + KG(jω)) plane is “Mapped” into O1, (−1, 0) in KG(jω) plane, the point
O1 is referred to as the critical point.

2 Graphical Interpretation of G(s)

• Concept of G(s) as a “Mapping” form s plane to G(s) plane.
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A point s in s plane is “Mapped” into a point G(s) in G(s) plane.

Example: Consider function G(s) = 1 + s2, when s = 1 + j, then

G(s) = 1 + s2 = 1 + (1 + j)2 = 1 + 1 + (−1) + 2j = 1 + 2j

Point A in s plane has been mapped in B in G(s) plane. Let s be moving on a curve c
as c1, c2, · · ·, cK , then corresponding points move in G(s) plane along d1, d2, · · ·, dK .

Thus the curve c in s plane has been mapped to curve d in G(s) plane via the function
G(s).
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• G(s)|s=jω = G(jω) implies that s is allowed to take values only in the imaginary axis of
the s plane. Thus as ω is varied from ω = −∞ to ω = +∞, the whole of the jω axis in
the s plane is mapped into a locus in the G(jω) plane.
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ω = −∞

• G(jω) can be considered as a phaser.
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G(jω) Plane

G(jω)

G(jω) = R(ω) + jX(ω)A(ω)

6 ϕ(ω)?

G(jω) = R(ω) + jX(ω) =
[
R2(ω) + X2(ω)

] 1
2 6 tan−1 X(ω)

R(ω)
= A(ω)6 ϕ(ω)
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And it has the following properties. If given G1(jω), G2(jω) as

G1(jω) = A1(ω)6 ϕ1(ω) = R1(ω) + jX1(ω)

G2(jω) = A2(ω)6 ϕ2(ω) = R2(ω) + jX2(ω)

then

G1(jω) + G2(jω) = [R1(ω) + R2(ω)] + j [X1(ω) + X2(ω)]

G1(jω)G2(jω) = A1(ω)A2(ω)6 [ϕ1ω + ϕ2(ω)]

G1(jω)

G2(jω)
=

A1(ω)

A2(ω)
6 [ϕ1ω − ϕ2(ω)]

3 Proof of Nyquist Criterion

Restate the theorem here:
Given:

• KG(s) = Open Loop Transfer Function with O unstable poles;

• H(s) = KG(s)
1+KG(s)

= Closed Loop Transfer Function with C unstable poles;

• N = number of counterclockwise encirclements of (−1+j0) point by the locus of G(jω),
−∞ < ω < +∞;

• n = degree of D(s).

Nyquist Theorem states that:
C = −N + O,

and C = 0 implies stability of the closed loop system.
This implies that “For a system to be closed loop stable, the number of encirclements of

(−1 + j0) point by the locus of G(jω), −∞ < ω < +∞ in the counterclockwise direction is
equal to the number of unstable open loop poles.”
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Proof:

F (s) = 1 + KG(s) = 1 +
KN(s)

D(s)
=

D(s) + KN(s)

D(s)
=

P (s)

D(s)

F (s) =

∏n
i=1(s− pic)∏n
k=1(s− pko)

, F (jω) =

∏n
i=1(jω − pic)∏n
k=1(jω − pko)
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F (jω) = |F (jω)| 6 ϕF (ω), ϕF (ω) =
n∑

i=1

ϕic(ω)−
n∑

k−1

ϕko(ω)

then

∆ϕF (ω)|+∞ω=−∞ =
n∑

i=1

∆ϕic(ω)|+∞ω=−∞ −
n∑

k=1

∆ϕko(ω)|+∞ω=−∞
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p in L.H.S.
(jω − p) = |jω − p| 6 ϕp(ω)
∆ϕp(ω)|+∞ω=−∞ = +π

p in R.H.S.
(jω − p) = |jω − p| 6 ϕp(ω)
∆ϕp(ω)|+∞ω=−∞ = −π
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Then for F (s) = D(s)+KN(s)
D(s)

, it has n zeros and n poles. And it has zeros which are same
as Closed Loop poles and has poles which are same as open loop poles.

Now

F (s) has

{
(n−C) zeros in L.H.S. and C zeros in R.H.S..
(n−O) poles in L.H.S. and O poles in R.H.S..

Thus

∆ϕF (ω)|+∞ω=−∞ =
n∑

i=1

∆ϕic(ω)|+∞ω=−∞ −
n∑

k=1

∆ϕko(ω)|+∞ω=−∞

= [π(n−C)− πC]− [π(n−O)− πO] = −2π(C−O) = 2πN (2)

where

N = counterclockwise encirclements of origin in (1 + G(jω)) plane

= counterclockwise encirclements of (−1 + j0) in G(jω) plane
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