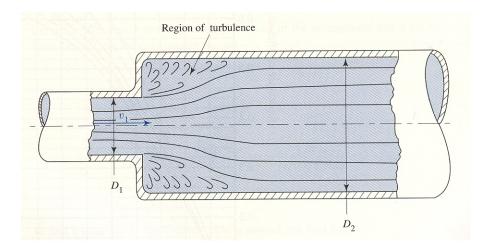

MINOR LOSSES IN PIPES

1

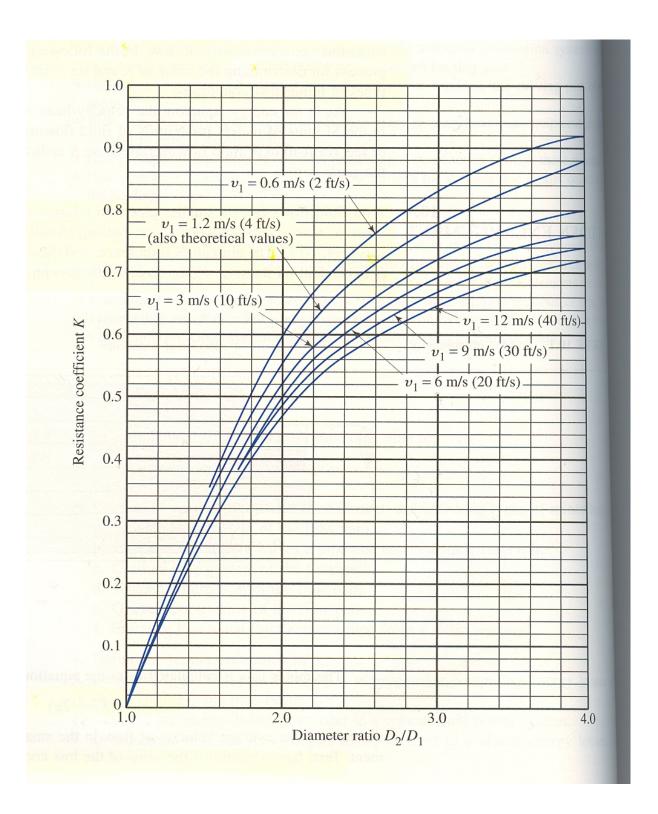
• Losses caused by **fittings**, **bends**, **valves**, etc.


- Minor in comparison to friction losses which are considered major.
- Losses are proportional to velocity of flow, geometry of device.

$$h_L = K(v^2 / 2g)$$

- The value of K is typically provided for various devices.
- Energy lost units **N.m/N or lb-ft/lb**

• K - loss factor - has no units (dimensionless)


Sudden enlargement

Energy lost is because of turbulence. <u>Amount of turbulence</u> depends on the differences in pipe diameters

$$h_L = K(v_1^2 / 2g)$$

The values of K have been experimentally determined and provided in Figure 10.2 and Table 10.1.

Velocity v ₁										
D ₁	0.6 m/s 2 ft/s	1.2 m/s 4 ft/s	3 m/s 10 ft/s	4.5 m/s 15 ft/s	6 m/s 20 ft/s	9 m/s 30 ft/s	12 m/s 40 ft/s			
	0.0	0.0	0.0	0,0	0.0	0.0	0.0			
	0.11	0.10	0.09	0.09	0.09	0.09	0.08			
-		0.25	0.23	0.22	0.22	0.21	0.20			
4	0.26	0.38	0.35	0.34	0.33	0.32	0.32			
.6	0.40	0.38	0.45	0.43	0.42	0.41	0.40			
8	0.51		0.52	0.51	0.50	0.48	0.47			
0	0.60	0.56	0.65	0.63	0.62	0.60	0.58			
	0.74	0.70	0.03	0.70	0.69	0.67	0.65			
	0.83	0.78	0.75	0.78	0.76	0.74	0.72			
	0.92	0.87		0.82	0.80	0.77	0.75			
	0.96	0.91	0.84	te de la companya de	0.84	0.82	0.80			
	1.00	0.96 0.98	0.89 0.91	0.86 0.88	0.84	0.83	0.81			

WIE 10.1 Resistance coefficient—sudden enlargement

Surve: King, H. W., and E. F. Brater. 1963. Handbook of Hydraulics, 5th ed. New York: McGraw-Hill, Table 6-7.

$D2/D1 = 1.0 \rightarrow 10.0 \rightarrow to infinity$

Analytical expression of K -

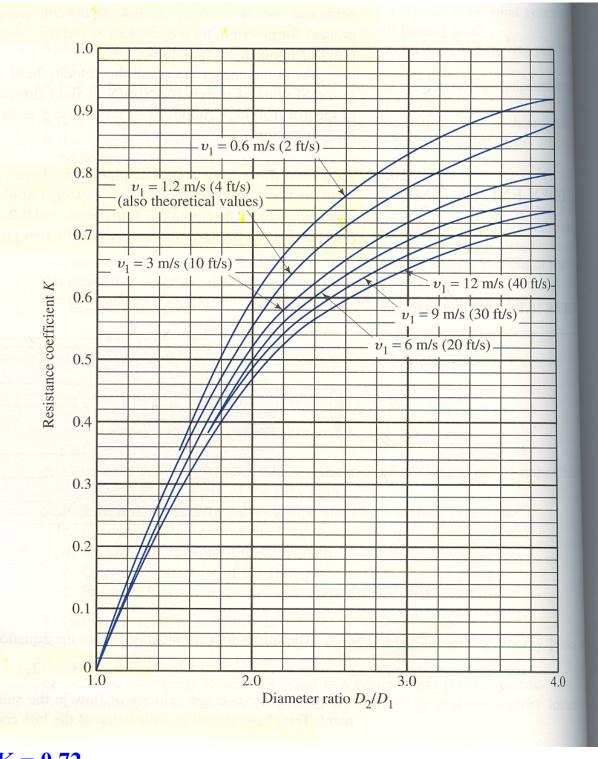
If the velocity $v_1 < 1.2$ m/s or 4 ft/s, the K values can be given as

$$K = \left[1 - (A_1 / A_2)\right]^2 = \left[1 - (D_1 / D_2)^2\right]^2$$

Example 10.1

Determine **energy loss** when 100 L/min of water moved from **1**" copper tube to **3**" copper tube

Procedure - Find velocity of flow and then find K.


 $D_1 = 25.3 \text{ mm}$ $A_1 = 0.0005017 \text{ m}^2$ $D_2 = 73.8 \text{ mm}$ $A_2 = 0.004282 \text{ m}^2$

 $V_1 = Q_1/A_1 = [(100 \text{ L/min})/(60,000)] / 0.0005017 = 3.32 \text{ m/s}$

(convert L/min to m³/s)

 $D_2/D_1 = 2.92$

Use graph – Figure 10.2

K = 0.72Therefore, $h_L = 0.72 * (3.32)^2 / 2*9.81 = 0.40$ m

Example problem 10.2

Determine the pressure difference between the two pipes of the previous problem

Apply general energy equation –

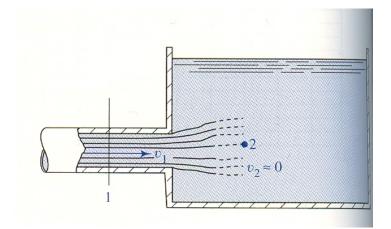
 $p_1/\gamma + z_1 + {v_1}^2/2g - h_L = p_2/\gamma + z_2 + {v_2}^2/2g$

rearrange -

$$p_1 - p_2 = \gamma[(z_2 - z_1) + (v_2^2 - v_1^2)/2g + h_L)]$$

 $v_2 = Q/A_2 = 0.39 m/s$

put the values in the equation and solve for p_1-p_2

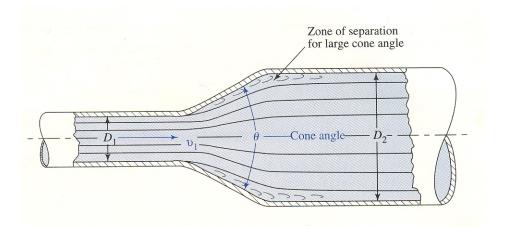

 $p_1 - p_2 = \gamma[(z_2 - z_1) + (v_2^2 - v_1^2)/2g + h_L)]$ $p_1 - p_2 = 9.81 [0 + ((0.39)^2 - (3.32)^2)/(2*9.81) + 0.40]$ only minor loss is considered because of short pipe length.

p₁ - **p**₂ = - **1.51** kPa

 $p_2 > p_1$.

Exit Loss

- Case of where pipe enters a tank a very large enlargement.
- The tank water is assumed to be stationery, that is, the velocity is zero.
- Therefore all kinetic energy in pipe is dissipated, therefore K =1.0



$$h_L = 1.0 * (v_1^2 / 2g)$$

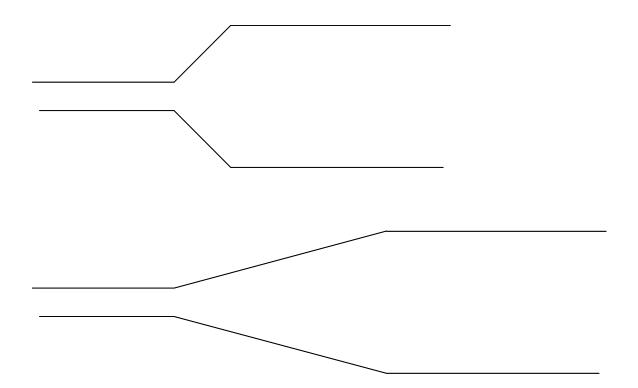
Gradual Enlargement

If the enlargement is gradual (as opposed to our previous case) – the energy losses are less.

The loss again depends on the ratio of the pipe diameters and the angle of enlargement.

$$h_L = K(v_1^2 / 2g)$$

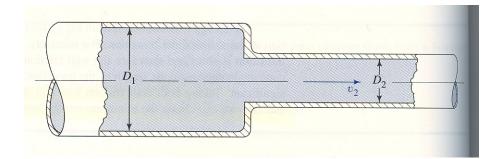
K can be determined from Fig 10.5 and table 10.2 -


Figure 10.5 -

	Angle of Cone θ											
D_2/D_1	2 °	6 °	10°	15°	20 °	25°	30 °	35°	40 °	45 °	50°	60 °
1,1	0.01	0.01	0.03	0.05	0.10	0.13	0.16	0.18	0.19	0.20	0.21	0.2
1.2	0.02	0.02	0.04	0.09	0.16	0.21	0.25	0.29	0.31	0.33	0.35	0.3
1.4	0.02	0.03	0.06	0.12	0.23	0.30	0.36	0.41	0.44	0.47	0.50	0.5
1.6	0.03	0.04	0.07	0.14	0.26	0.35	0.42	0.47	0.51	0.54	0.57	0.6
1.8	0.03	0.04	0.07	0.15	0.28	0.37	0.44	0.50	0.54	0.58	0.61	0.0
2.0	0.03	0.04	0.07	0.16	0.29	0.38	0.46	0.52	0.56	0.60	0.63	0.0
2.5	0.03	0.04	0.08	0.16	0.30	0.39	0.48	0.54	0.58	0.62	0.65	0.7
3.0	0.03	0.04	0.08	0.16	0.31	0.40	0.48	0.55	0.59	0.63	0.66	0.1
∞	0.03	0.05	0.08	0.16	0.31	0.40	0.49	0.56	0.60	0.64	0.67	0.1

Source: King, H. W., and E. F. Brater. 1963. Handbook of Hydraulics, 5th ed. New York: McGraw-Hill, Table 6-8.

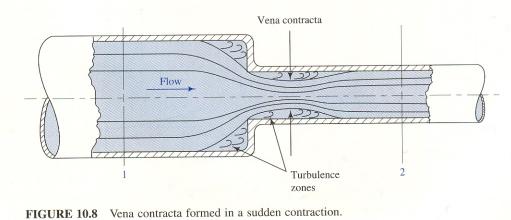
<u>Note</u> –


- If angle increases (in pipe enlargement) minor losses increase
- If angle decreases minor losses decrease, but you also need a longer pipe to make the transition – that means more FRICTION losses - therefore there is a tradeoff!

• Minimum loss including minor and friction losses occur for <u>angle of 7 degrees – OPTIMUM angle</u>!

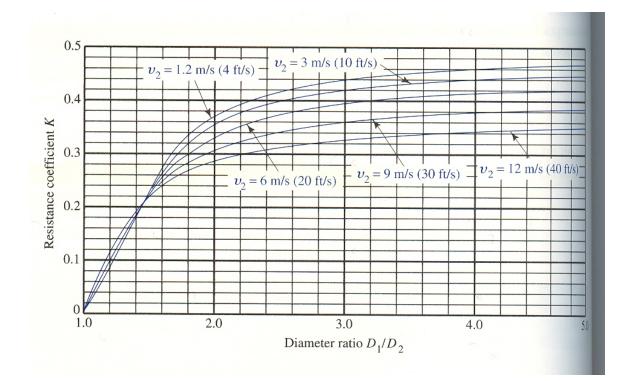
Sudden Contraction

Decrease in pipe diameter -



Loss is given by –

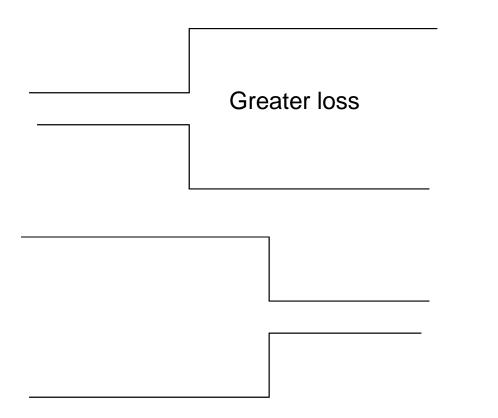
$$h_L = K(v_2^2 / 2g)$$


Note that the loss is related to the velocity in the second (smaller) pipe!

The loss is associated with the contraction of flow and turbulence –

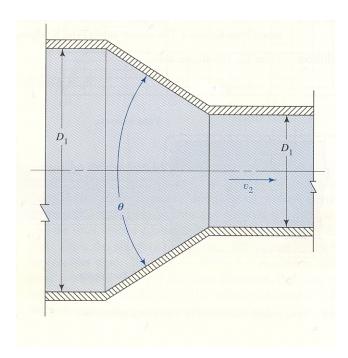
- The section at which the flow is the narrowest Vena Contracta
- At vena contracta, the velocity is maximum.

K can be computed using **Figure 10.7 and table 10.3** – Again based on diameter ratio and velocity of flow

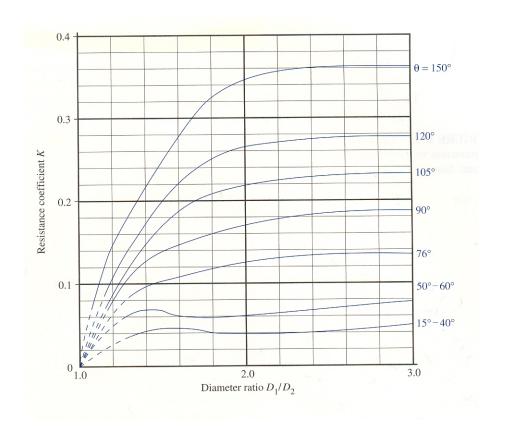


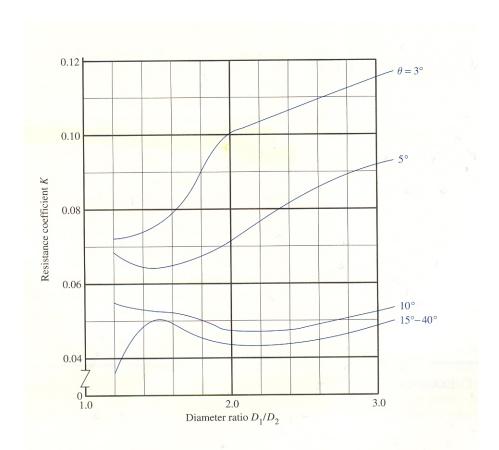
	Velocity v ₂										
D_1/D_2	0.6 m/s 2 ft/s	1.2 m/s 4 ft/s	1.8 m/s 6 ft/s	2.4 m/s 8 ft/s	3 m/s 10 ft/s	4.5 m/s 15 ft/s	6 m/s 20 ft/s	9 m/s 30 ft/s	12 m/s 40 ft/s		
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	0.03	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.06		
	0.07	0.07	0.07	0.07	0.08	0.08	0.09	0.10	0.11		
	0.17	0.17	0.17	0.17	0.18	0.18	0.18	0.19	0.20		
	0.26	0.26	0.26	0.26	0.26	0.25	0.25	0.25	0.24		
	0.34	0.34	0.34	0.33	0.33	0.32	0.31	0.29	0.27		
	0.38	0.37	0.37	0.36	0.36	0.34	0.33	0.31	0.29		
	0.40	0.40	0.39	0.39	0.38	0.37	0.35	0.33	0.30		
	0.42	0.42	0.41	0.40	0.40	0.38	0.37	0.34	0.31		
	0.44	0.44	0.43	0.42	0.42	0.40	0.39	0.36	0.33		
	0.47	0.46	0.45	0.45	0.44	0.42	0.41	0.37	0.34		
	0.48	0.47	0.47	0.46	0.45	0.44	0.42	0.38	0.35		
	0.49	0.48	0.48	0.47	0.46	0.45	0.43	0.40	0.36		
	0.49	0.48	0.48	0.47	0.47	0.45	0.44	0.41	0.38		

IBLE 10.3 Resistance coefficient—sudden contraction


Source: King, H. W., and E. F. Brater, 1963. Handbook of Hydraulics, 5th ed. New York: McGraw-Hill, Table 6-9.

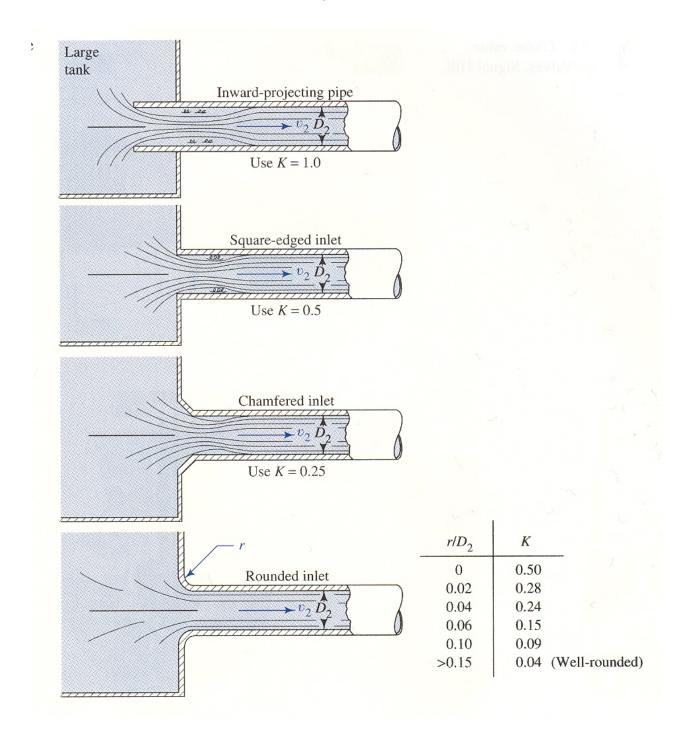
• Energy losses for sudden contraction are less than those for sudden enlargement


Gradual Contraction


Again a gradual contraction will lower the energy loss (as opposed to sudden contraction). θ is called the cone angle.

$$h_L = K(v_2^2 / 2g)$$

K is given by Figs 10.10 and 10.11



Note that K values increase for very small angles (less than 15 degrees)

Why – the plot values includes both the effect flow separation and friction!

Entrance Losses

Fluid moves from zero velocity in tank to v_2

Resistance Coefficients for Valves & Fittings

Loss is given by –

$$h_L = K(v^2 / 2g)$$

Where K is computed as –

$$K = (L_e / D) * f_t$$

 L_e = equivalent length (length of pipe with same resistance as the fitting/valve)

 $f_T = friction factor$

The equivalent ratio (L_e/D) can be computed by Table 10.4 for various valves/fittings

Туре	Equivalent Length in Pipe Diameters L_e/D
Globe valve—fully open	340
Angle valve—fully open	150
Gate valve—fully open	8
<u>3/4 open</u>	35
—½ open	160
— ¹ /4 open	900
Check valve—swing type	100
Check valve—ball type	150
Butterfly valve—fully open, 2-8 in	45
—10–14 in	35
	25
Foot valve-poppet disc type	420
Foot valve—hinged disc type	75
90° standard elbow	30
90° long radius elbow	20
90° street elbow	50
45° standard elbow	16
45° street elbow	26
Close return bend	50
Standard tee-with flow through run	20
 45° standard elbow 45° street elbow Close return bend Standard tee—with flow through run —with flow through branch 	60

Source: Crane Valves, Signal Hill, CA.

And f_T for <u>new steel pipe</u> can be computed using Table 10.5

Nominal Pipe Size (in)	Friction Factor f_T	Nominal Pipe Size (in)	Friction Factor f_T	
1/2	0.027	31/2, 4	0.017	
3/4	0.025	5	0.016	
1	0.023	6	0.015	
11/4	0.022	8-10	0.014	
$1^{1/2}$	0.021	12–16	0.013	
2	0.019	18–24	0.012	
21/2, 3	0.018			

For OLD pipes however, f_T cannot be computed by this table.

You have to use the procedure we used for Moody's diagram!

- Get ε for the pipe type from Table 8.2
- Determine D/ ϵ for the pipe
- Then use the Moody diagram to determine the value of f_T for the zone of complete turbulence.

NO ASSIGNMENTS!