## MINOR LOSSES IN PIPES

- Losses caused by fittings, bends, valves, etc.


- Minor in comparison to friction losses which are considered major.
- Losses are proportional to - velocity of flow, geometry of device.

$$
h_{L}=K\left(v^{2} / 2 g\right)
$$

- The value of $\mathbf{K}$ is typically provided for various devices.
- Energy lost - units - N.m/N or lb-ft/lb
- K - loss factor - has no units (dimensionless)


## Sudden enlargement



Energy lost is because of turbulence. Amount of turbulence depends on the differences in pipe diameters

$$
h_{L}=K\left(v_{1}^{2} / 2 g\right)
$$

The values of K have been experimentally determined and provided in Figure 10.2 and Table 10.1.


LBLE 10.1 Resistance coefficient-sudden enlargement
$\square$ Velocity $v_{1}$

| $\begin{gathered} 0.6 \mathrm{~m} / \mathrm{s} \\ 2 \mathrm{ft} / \mathrm{s} \end{gathered}$ | $\begin{gathered} 1.2 \mathrm{~m} / \mathrm{s} \\ 4 \mathrm{ft} / \mathrm{s} \end{gathered}$ | $\begin{aligned} & 3 \mathrm{~m} / \mathrm{s} \\ & 10 \mathrm{ft} / \mathrm{s} \end{aligned}$ | $\begin{aligned} & 4.5 \mathrm{~m} / \mathrm{s} \\ & 15 \mathrm{ft} / \mathrm{s} \end{aligned}$ | $\begin{aligned} & 6 \mathrm{~m} / \mathrm{s} \\ & 20 \mathrm{ft} / \mathrm{s} \end{aligned}$ | $\begin{aligned} & 9 \mathrm{~m} / \mathrm{s} \\ & 30 \mathrm{ft} / \mathrm{s} \end{aligned}$ | $\begin{aligned} & 12 \mathrm{~m} / \mathrm{s} \\ & 40 \mathrm{ft} / \mathrm{s} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| 0.0 | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | 0.08 |
| . 26 | 0.25 | 0.23 | 0.22 | 0.22 | 0.21 | 0.20 |
| 0.40 | 0.38 | 0.35 | 0.34 | 0.33 | 0.32 | 0.32 |
| 0.51 | 0.48 | 0.45 | 0.43 | 0.42 | 0.41 | 0.40 |
| 0.60 | 0.56 | 0.52 | 0.51 | 0.50 | 0.48 | 0.47 |
| 0.74 | 0.70 | 0.65 | 0.63 | 0.62 | 0.60 | 0.58 |
| 0.83 | 0.78 | 0.73 | 0.70 | 0.69 | 0.67 | 0.65 |
| 0.92 | 0.87 | 0.80 | 0.78 | 0.76 | 0.74 | 0.72 |
| 0.96 | 0.91 | 0.84 | 0.82 | 0.80 | 0.77 | 0.75 |
|  | 0.96 | 0.89 | 0.86 | 0.84 | 0.82 | 0.80 |
| 1.00 | 0.98 | 0.91 | 0.88 | 0.86 | 0.83 | 0.81 |

wree: King, H. W., and E. F. Brater. 1963. Handbook of Hydraulics, 5th ed. New York: McGraw-Hill, Table 6-7.
D2/D1 = 1.0 -> 10.0 -> to infinity

## Analytical expression of K -

If the velocity $\mathbf{v}_{\mathbf{1}}<\mathbf{1 . 2} \mathbf{~ m} / \mathbf{s}$ or $\mathbf{4} \mathbf{f t} / \mathbf{s}$, the K values can be given as

$$
K=\left[1-\left(A_{1} / A_{2}\right)\right]^{2}=\left[1-\left(D_{1} / D_{2}\right)^{2}\right]^{2}
$$

## Example 10.1

Determine energy loss when $100 \mathrm{~L} / \mathrm{min}$ of water moved from $\mathbf{1 "}$ copper tube to $\mathbf{3}$ " copper tube

Procedure - Find velocity of flow and then find K.
$\mathrm{D}_{1}=25.3 \mathrm{~mm}$
$\mathrm{A}_{1}=0.0005017 \mathrm{~m}^{2}$
$\mathrm{D}_{2}=73.8 \mathrm{~mm}$
$\mathrm{A}_{2}=0.004282 \mathrm{~m}^{2}$
$\mathrm{V}_{1}=\mathrm{Q}_{1} / \mathrm{A}_{1}=[(100 \mathrm{~L} / \mathrm{min}) /(60,000)] / 0.0005017=\mathbf{3 . 3 2} \mathrm{m} / \mathrm{s}$
(convert $\mathrm{L} / \mathrm{min}$ to $\mathrm{m}^{3} / \mathrm{s}$ )
$\mathrm{D}_{2} / \mathrm{D}_{1}=2.92$
Use graph - Figure 10.2

$\mathrm{K}=\mathbf{0 . 7 2}$
Therefore, $\mathbf{h}_{\mathrm{L}}=\mathbf{0 . 7 2} *(\mathbf{3 . 3 2})^{\mathbf{2}} / \mathbf{2} \mathbf{* 9 . 8 1}=\mathbf{0 . 4 0} \mathrm{m}$

## Example problem 10.2

Determine the pressure difference between the two pipes of the previous problem

Apply general energy equation -

$$
\mathbf{p}_{1} / \gamma+\mathbf{z}_{1}+\mathbf{v}_{1}{ }^{2} / 2 \mathbf{g}-\mathbf{h}_{\mathrm{L}}=\mathbf{p}_{2} / \gamma+\mathbf{z}_{2}+\mathbf{v}_{2}{ }^{2} / 2 \mathbf{g}
$$

rearrange -

$$
\begin{aligned}
& \left.p_{1}-p_{2}=\gamma\left[\left(\mathbf{z}_{2}-\mathbf{z}_{1}\right)+\left({v_{2}}^{2}-{v_{1}}^{2}\right) / 2 g+h_{L}\right)\right] \\
& \mathrm{v}_{2}=\mathrm{Q} / \mathrm{A}_{2}=0.39 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

put the values in the equation and solve for $\mathrm{p}_{1}-\mathrm{p}_{2}$

$$
\begin{aligned}
& \left.\quad \mathbf{p}_{\mathbf{1}}-\mathbf{p}_{\mathbf{2}}=\gamma\left[\left(\mathbf{z}_{\mathbf{2}}-\mathbf{z}_{\mathbf{1}}\right)+\left(\mathbf{v}_{\mathbf{2}}{ }^{\mathbf{2}}-\mathbf{v}_{\mathbf{1}}^{\mathbf{2}}\right) / \mathbf{2} \mathbf{g}+\mathbf{h}_{\mathbf{L}}\right)\right] \\
& \mathrm{p} 1-\mathrm{p} 2=9.81\left[0+\left((0.39)^{2}-(3.32)^{2}\right) /(2 * 9.81)+0.40\right] \\
& \text { only minor loss is considered because of short pipe length. } \\
& \mathbf{p}_{\mathbf{1}}-\mathbf{p}_{\mathbf{2}}=-\mathbf{1 . 5 1} \mathbf{~ k P a} \\
& \mathbf{p}_{2}>\mathrm{p}_{1} .
\end{aligned}
$$

## Exit Loss

- Case of where pipe enters a tank - a very large enlargement.
- The tank water is assumed to be stationery, that is, the velocity is zero.
- Therefore all kinetic energy in pipe is dissipated, therefore $\mathrm{K}=1.0$



## Gradual Enlargement

If the enlargement is gradual (as opposed to our previous case) - the energy losses are less.

The loss again depends on the ratio of the pipe diameters and the angle of enlargement.


$$
h_{L}=K\left(v_{1}^{2} / 2 g\right)
$$

K can be determined from Fig 10.5 and table 10.2 -


Figure 10.5 -

TABLE 10.2 Resistance coefficient-gradual enlargement

| $D_{2} / D_{1}$ | Angle of Cone $\boldsymbol{\theta}$ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $2^{\circ}$ | $6^{\circ}$ | $10^{\circ}$ | $15^{\circ}$ | $20^{\circ}$ | $25^{\circ}$ | $30^{\circ}$ | $35^{\circ}$ | $40^{\circ}$ | $45^{\circ}$ | $50^{\circ}$ | 60 |
|  | 0.01 | 0.01 | 0.03 | 0.05 | 0.10 | 0.13 | 0.16 | 0.18 | 0.19 | 0.20 | 0.21 | 0.23 |
|  | 0.02 | 0.02 | 0.04 | 0.09 | 0.16 | 0.21 | 0.25 | 0.29 | 0.31 | 0.33 | 0.35 | 0.37 |
|  | 0.02 | 0.03 | 0.06 | 0.12 | 0.23 | 0.30 | 0.36 | 0.41 | 0.44 | 0.47 | 0.50 | 0.53 |
|  | 0.03 | 0.04 | 0.07 | 0.14 | 0.26 | 0.35 | 0.42 | 0.47 | 0.51 | 0.54 | 0.57 | 0.61 |
|  | 0.03 | 0.04 | 0.07 | 0.15 | 0.28 | 0.37 | 0.44 | 0.50 | 0.54 | 0.58 | 0.61 | 0.65 |
|  | 0.03 | 0.04 | 0.07 | 0.16 | 0.29 | 0.38 | 0.46 | 0.52 | 0.56 | 0.60 | 0.63 | 0.68 |
|  | 0.03 | 0.04 | 0.08 | 0.16 | 0.30 | 0.39 | 0.48 | 0.54 | 0.58 | 0.62 | 0.65 | 0.70 |
|  | 0.03 | 0.04 | 0.08 | 0.16 | 0.31 | 0.40 | 0.48 | 0.55 | 0.59 | 0.63 | 0.66 | 0.71 |
|  | 0.03 | 0.05 | 0.08 | 0.16 | 0.31 | 0.40 | 0.49 | 0.56 | 0.60 | 0.64 | 0.67 | 0.72 |

Source: King, H. W., and E. F. Brater. 1963. Handbook of Hydraulics, 5th ed. New York: McGraw-Hill, Table 6-8.

## Note -

- If angle increases (in pipe enlargement) - minor losses increase
- If angle decreases - minor losses decrease, but you also need a longer pipe to make the transition - that means more FRICTION losses - therefore there is a tradeoff!

- Minimum loss including minor and friction losses occur for angle of 7 degrees - OPTIMUM angle!


## Sudden Contraction

Decrease in pipe diameter -


Loss is given by -

$$
h_{L}=K\left(v_{2}^{2} / 2 g\right)
$$

Note that the loss is related to the velocity in the second (smaller) pipe!

The loss is associated with the contraction of flow and turbulence -


FIGURE 10.8 Vena contracta formed in a sudden contraction.

- The section at which the flow is the narrowest - Vena Contracta
- At vena contracta, the velocity is maximum.

K can be computed using Figure 10.7 and table 10.3 Again based on diameter ratio and velocity of flow


| $D_{1} / D_{2}$ | Velocity $\nu_{2}$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 0.6 \mathrm{~m} / \mathrm{s} \\ 2 \mathrm{ft} / \mathrm{s} \end{gathered}$ | $\begin{gathered} 1.2 \mathrm{~m} / \mathrm{s} \\ 4 \mathrm{ft} / \mathrm{s} \end{gathered}$ | $\begin{gathered} 1.8 \mathrm{~m} / \mathrm{s} \\ 6 \mathrm{ft} / \mathrm{s} \end{gathered}$ | $\begin{gathered} 2.4 \mathrm{~m} / \mathrm{s} \\ 8 \mathrm{ft} / \mathrm{s} \end{gathered}$ | $\begin{aligned} & 3 \mathrm{~m} / \mathrm{s} \\ & 10 \mathrm{ft} / \mathrm{s} \end{aligned}$ | $\begin{aligned} & 4.5 \mathrm{~m} / \mathrm{s} \\ & 15 \mathrm{ft} / \mathrm{s} \end{aligned}$ | $\begin{aligned} & 6 \mathrm{~m} / \mathrm{s} \\ & 20 \mathrm{ft} / \mathrm{s} \end{aligned}$ | $\begin{aligned} & 9 \mathrm{~m} / \mathrm{s} \\ & 30 \mathrm{ft} / \mathrm{s} \end{aligned}$ | $12 \mathrm{~m} / \mathrm{s}$ $40 \mathrm{ft} / \mathrm{s}$ |
|  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
|  | 0.03 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.05 | 0.05 | 0.06 |
|  | 0.07 | 0.07 | 0.07 | 0.07 | 0.08 | 0.08 | 0.09 | 0.10 | 0.11 |
|  | 0.17 | 0.17 | 0.17 | 0.17 | 0.18 | 0.18 | 0.18 | 0.19 | 0.20 |
|  | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 0.25 | 0.25 | 0.25 | 0.24 |
|  | 0.34 | 0.34 | 0.34 | 0.33 | 0.33 | 0.32 | 0.31 | 0.29 | 0.27 |
|  | 0.38 | 0.37 | 0.37 | 0.36 | 0.36 | 0.34 | 0.33 | 0.31 | 0.29 |
|  | 0.40 | 0.40 | 0.39 | 0.39 | 0.38 | 0.37 | 0.35 | 0.33 | 0.30 |
|  | 0.42 | 0.42 | 0.41 | 0.40 | 0.40 | 0.38 | 0.37 | 0.34 | 0.31 |
|  | 0.44 | 0.44 | 0.43 | 0.42 | 0.42 | 0.40 | 0.39 | 0.36 | 0.33 |
| 4.0 | 0.47 | 0.46 | 0.45 | 0.45 | 0.44 | 0.42 | 0.41 | 0.37 | 0.34 |
|  | 0.48 | 0.47 | 0.47 | 0.46 | 0.45 | 0.44 | 0.42 | 0.38 | 0.35 |
|  | 0.49 | 0.48 | 0.48 | 0.47 | 0.46 | 0.45 | 0.43 | 0.40 | 0.36 |
|  | 0.49 | 0.48 | 0.48 | 0.47 | 0.47 | 0.45 | 0.44 | 0.41 | 0.38 |

Source: King, H. W., and E. F. Brater, 1963. Handbook of Hydraulics, 5th ed. New York: McGraw-Hill, Table 6-9.

## - Energy losses for sudden contraction are less than those for sudden enlargement



## Gradual Contraction

Again a gradual contraction will lower the energy loss (as opposed to sudden contraction). $\theta$ is called the cone angle.


$$
h_{L}=K\left(v_{2}{ }^{2} / 2 g\right)
$$

K is given by Figs 10.10 and 10.11



Note that K values increase for very small angles (less than 15 degrees)

Why - the plot values includes both the effect flow separation and friction!

## Entrance Losses

Fluid moves from zero velocity in tank to $\mathrm{v}_{2}$


| $r / D_{2}$ | $K$ |
| :---: | :---: |
| 0 | 0.50 |
| 0.02 | 0.28 |
| 0.04 | 0.24 |
| 0.06 | 0.15 |
| 0.10 | 0.09 |
| $>0.15$ | 0.04 (Well-rounded) |

## Resistance Coefficients for Valves \& Fittings

Loss is given by -

$$
h_{L}=K\left(v^{2} / 2 g\right)
$$

Where K is computed as -

$$
K=\left(L_{e} / D\right)^{*} f_{t}
$$

$L_{e}=$ equivalent length (length of pipe with same resistance as the fitting/valve)
$\mathrm{f}_{\mathrm{T}}=$ friction factor

## The equivalent ratio ( $\mathbf{L}_{\mathrm{e}} / \mathbf{D}$ ) can be computed by Table 10.4 for various valves/fittings



[^0]And
$\mathrm{f}_{\mathrm{T}}$ for new steel pipe can be computed using Table 10.5

| Nominal <br> Pipe Size (in) | Friction <br> Factor $f_{T}$ | Nominal Pipe Size (in) | Friction <br> Factor $f_{T}$ |
| :---: | :---: | :---: | :---: |
| 1/2 | 0.027 | $3^{1 / 2}, 4$ | 0.017 |
| $3 / 4$ | 0.025 | 5 | 0.016 |
| 1 | 0.023 | 6 | 0.015 |
| $11 / 4$ | 0.022 | 8-10 | 0.014 |
| $1^{1 / 2}$ | 0.021 | 12-16 | 0.013 |
| 2 | 0.019 | 18-24 | 0.012 |
| 21/2, 3 | 0.018 |  |  |

For OLD pipes however, $f_{T}$ cannot be computed by this table.

You have to use the procedure we used for Moody's diagram!

- Get $\varepsilon$ for the pipe type from Table 8.2
- Determine $\mathrm{D} / \varepsilon$ for the pipe
- Then use the Moody diagram to determine the value of $f_{T}$ for the zone of complete turbulence.


[^0]:    Source: Crane Valves, Signal Hill, CA.

