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Internal Flow (Laminar) – Fully Developed Flow in Tubes 

(Reorganization of Professor Nenad Miljkovic’s course notes) 

Define entrance length xel (or developing length) as the length of tube in which velocity profile 

varies with radial position, r, and axial location, x. 

 

We can estimate the magnitude of the entrance length xel.  

We know that the boundary layer thickness in a laminar flow on a flat plate is: 

δ

x
= 5/(Rex)0.5   (Blasius solution) 

We can estimate that δ~
D

2
 when the two boundary layers merge. 

D

2xel
~5.0/(Rexel

)
0.5

 

Note that we don’t use equals (=) here because it is not a flat plate. 

D

xel
~

10

(Rexel
)

0.5 =
10

(
𝜌𝑈∞𝑥𝑒𝑙

𝜇 )
0.5 =

10

(
𝜌𝑈∞𝑥𝑒𝑙

𝜇 ∗
D
D)

0.5 

(
D

xel
)

0.5

~
10

(𝑅𝑒𝐷)0.5
 

Therefore 
xel

𝐷
~

𝑅𝑒𝐷

100
~0.01𝑅𝑒𝐷, ReD = 𝜌𝑈∞𝐷/𝜇  

The actually solution experimentally verified is  

xel

𝐷
= 0.05𝑅𝑒𝐷 

Now looking at the fully developed region, with Navier-Stokes equations we get 

Velocity profile in a pipe: u(r) = ro
2/4𝜇(−

𝜕𝑃

𝜕𝑥
)(1 −

𝑟2

𝑟𝑜
2) 

Average velocity: 𝑢̅ = ro
2/8𝜇(−

𝜕𝑃

𝜕𝑥
) u(r) = 2𝑢̅(1 −

𝑟2

𝑟𝑜
2) 

 

Typically we want to solve for friction coefficient and pressure loss 

Tube friction factor: f = ∆P/(
L

D
∗

1

2
∗ ρv2) 

Tube friction coefficient: Cf =
𝜏

1

2
∗𝜌𝑣2

 

 

Look at a finite differential element in the flow and using a force balance, we can get: 4Cf = 𝑓. 
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The friction factor in a pipe can be solved using the velocity profile we have achieved before: 

f =
64

ReD
 (Pipe friction factor for laminar flow. Also known as the Darcy-Weisbach equation) 

Note that f ∗ ReD=constant for any cross section pipe. 

DH =
4𝐴

𝑃
 where A=area and P=perimeter. 

 

Heat transfer in the pipe: 

 

Here we have a similar situation as the hydrodynamic developing (or entrance) length but with 

temperature. 

Thermal developing length: 
xe,T

𝐷
= 0.017𝑅𝑒𝐷𝑃𝑟 

 

To estimate the heat transfer we can try a simple analysis 

h =
qwall

′′

∆𝑇
 

Since h∆T~kf ∗
∆𝑇

𝛿𝑇
, we have h~

kf

𝛿𝑇
. 

Assuming δT ≈
𝑟𝑜

2
 (since it is pipe flow) 

ℎ̅~
2𝑘𝑓

𝑟𝑜
=

4𝑘𝑓

𝐷
 

We know that 𝑁𝑢𝐷
̅̅ ̅̅ ̅̅ =

ℎ̅𝐷

𝑘𝑓
≈ 4 just from a very simple analysis. 

 

It is important to note here that heat transfer for internal flow problems is calculated using the 

bulk fluid temperature. 

ℎ̅ =
𝑞𝑤𝑎𝑙𝑙

′′

𝑇𝑤−𝑇𝑏
, Tb=bulk fluid temperature 

Think of Tb as the uniform temperature of the pipe fluid if it was allowed to mix and come an 

equilibrium temperature in an adiabatic way. 

Tb =
1

AV̅
∗ ∫ 𝑢(𝑟)𝑇𝑑𝐴 

 

Constant wall heat flux: (qo
′′=constant, Fully developed flow) 

Energy equation: ρCp𝑢 (
𝜕𝑇

𝜕𝑥
) = 𝑘 ∗

1

𝑟
∗

𝜕(𝑟∗
𝜕𝑇

𝜕𝑟
)

𝜕𝑟
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LHS: convection 

RHS: conduction 

 

Let 
T−Tb

Tw−Tb
= f(r) 

q′′|𝑟=𝑟𝑜
= −𝑘 ∗

𝜕𝑇

𝜕𝑟
|𝑟𝑜

= −𝑘 ∗
𝜕𝑓

𝜕𝑟
|𝑟𝑜

(𝑇𝑤 − 𝑇𝑏) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

For fully developed flow the temperature profile shape does not change: 
𝜕𝑓

𝜕𝑟
|𝑟𝑜

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Therefore Tw − Tb = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

 

Solve energy equation on a fluid element: 

 

We can get the temperature profile as: 

T(r) = Tw −
4𝑞𝑜

′′

𝑘𝑓𝑟𝑜
∗ (

3𝑟𝑜
2

16
−

𝑟2

4
+

𝑟4

16𝑟𝑜
2

) 

Solve for Tb: 

Tw − Tb =
11

24
∗

qo
′′𝑟𝑜

𝑘𝑓
 (Not a function of x) 

Solve for Nusselt number: 

𝑁𝑢𝐷
̅̅ ̅̅ ̅̅ =

ℎ̅𝐷

𝑘𝑓
= 4.364 (Laminar flow in a tube with constant heat flux conditions) 

 

We can do a similar analysis to show that for a constant wall temperature boundary condition: 

𝑁𝑢𝐷
̅̅ ̅̅ ̅̅ =

ℎ̅𝐷

𝑘𝑓
= 3.66 (Tw = cosntant) 

Our previous solution of NuD ≈ 4 is pretty close to the exact analytical solutions. 

 

Note that both of these solutions are valid only if  

ReD =
𝜌𝑢̅𝐷

𝜇
≤ 2300 (Laminar flow in a smooth pipe, fully developed.) 

 

Some physical insights: 

We defined the Nusselt number as the non-dimensional temperature gradient: 

−
∂θ

∂n∗ =
ℎ𝐿

𝑘𝑓
= 𝑁𝑢, 𝑛∗ =

𝑛

𝐿
𝑜𝑟 𝑛∗ =

𝑛

𝐷
 for a pipe 

θ =
T − Tf

Ts − Tf
 

This tells us why it’s so advantageous to go to mini or micro channel flows for cooling. By 

reducing the channel dimension (diameter), we reduce the effective boundary layer thickness 

(thermal, δT) and pump up the heat transfer. 
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It is the direction of research these days to push dimensions to the micro length scale to 

maximize h. One drawback to this is the excess pumping power required to drive the fluid. 

∆P = f ∗
L

D
∗

1

2
∗ 𝜌𝑉̅2 

As D decreases, ∆P increases non-linearly since f =
64

ReD
=

64𝜇

𝜌𝑉̅𝐷
 and 𝑉̅ ∝ 𝐷−2 for a constant 

mass flow rate. 


