

THE HIGH VOLTAGE BATTERIES OF THE BMW i3 AND BMW i8.

AABC 2014, FEBRUARY 3TH-7TH, ATLANTA

AGENDA.

BMW approach to sustainable mobility: BMW i

Project targets and requirements

Technical concepts and solutions

Summary

BMW i - SUSTAINABILITY DRIVES THE LIFECYCLE.

New materials and recycling

Production concept of the future

New electric drivetrain

Integrated approach of BMW i – BORN ELECTRIC.

Pioneering design

New customer focus

THE PURPOSE DESIGN LIFEDRIVE CONCEPT.

Two separate, independent functional units:

- Life module
 - High-strength and extremely lightweight passenger cell made from carbon fibre-reinforced plastic
- Drive module
 Ideal integration of suspension and eDrive System

ELECTRIC POWERTRAIN: THE BMW eDRIVE SYSTEM.

- In-house development
 Key components developed at BMW
 (power electronics, electric motor and high voltage battery)
- In-house production
 Electric motor and high voltage battery assembled at BMW
- High efficiency
 Increase range and reduce battery costs
- Low weight
 In accordance with the light weight concept i3

REQUIREMENTS FOR THE HIGH VOLTAGE BATTERIES.

- High power density
 Enabling BMW typical driving dynamics
- High efficiency & low weight
 Increase range and reduce battery costs
- LifetimeBattery warranty of 8 years
- SafetyNo risk in any situation
- Sustainability
 Choice of materials & second life use

BMW HIGH VOLTAGE BATTERIES: TECHNICAL DATA.

BMW i8 high voltage battery

BMW i3 high voltage battery

Technical Data	BMW i3	BMW i8
Nominal voltage	360 V	355V
Max. current	409 A	320A
Energy content	22 kWh	7.1 kWh
Discharge Power peak	147 kW	105kW
Total number of cells	96 (1p, 96s)	
Weight (with connections)	233 kg	98 kg
Charging time	<0,5 h for 80% (DC charge)	2h (AC charge)
	, ,	7.8.0

BMW BATTERY SYSTEMS HAVE A UNIQUE POSITION IN TERMS OF POWER / ENERGY DENSITY.

TECHNICAL CONCEPT - BATTERY PACK.

Concept identical for PHEV / EV application

- Distributed E/E design (BMU, S-Box, CSC)
- Structural rigidity by overall mechanical design
- Light-weight housing (aluminum extruded/diecast)
- Direct refrigeration (single/multi-layer)
- All components serviceable, easy access, (high voltage is protected against contact within battery housing)

TECHNICAL CONCEPT – E/E.

- Modular kit HW: same electronic components in both systems
- Modular kit SW: same software and algorithms in both systems, diversity by calibration
- BMU (Battery Management Unit), S-Box (Switch Box) and CSC(Cell Supervising Circuit)
- BMU contains battery management software (e.g. SOC,SOH, diagnosis)
- CSC for cell voltage/temperature measurement
- S-Box: fuse, contactors, current and voltage measurement

TECHNICAL CONCEPT - CELL MODULE.

- Cell number per module (12 v.s. 16): trade-off between package, electronic components and transport regulations
- Cell module is a serviceable unit
- Validation on module level guarantees high quality and reduced costs for derivates
- Meeting UN38.3 standard
- Possibility to use EV and PHEV1 modules for further projects

TECHNICAL CONCEPT - REFRIGERANT COOLING.

Cell Lifetime Cooling performance is key factor for lifetime

Weight & performance Highest cooling performance at minimum weight and costs (no extra installation in vehicle, use of existing A/C system)

- Heating option
 Available for maximum comfort and performance without losing range
- Complexity of direct cooling
 Intensive validation and simulation is necessary for complex designs (multi-layer)

LIGHTWEIGHT – A KEY FACTOR FOR FUTURE BATTERY SYSTEMS.

Electric range for EV (based on BMW i3):

Today: 160km / 100miles

Target (2025): 480km / 300miles

^{*} targets based on battery pack 250Wh/kg / 450Wh/lt [P. Lamp, ABAA 6, Chicago 2013]

SUMMARY.

- BMW i as a holistic approach to sustainable mobility
- In-house development of high voltage batteries in third generation
- Purpose design vehicle architecture allows ideal integration in terms of weight & costs
- Powerful, long-lasting and safe high voltage batteries
- Modular kit approach, possibility of use for further electric powertrains at BMW

