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Heat Exchanger Problem Calculation (LMTD and Effectiveness-NTU method) 

(Reorganization of the Lecture Notes from Professor Nenad Miljkovic) 

 

From our resistance network, we can write U = 1/(
1

h1
+

t

k
+

1

h2
) 

Now we can analyze out heat exchanger: (Perimeter P) 

 

Across the element dx: 

dq = −𝑀̇𝐶𝑑𝑇 = 𝑚̇𝑐𝑑𝑡 

dT = −dq/𝑀̇𝐶 and dt = dq/𝑚̇𝑐 

d(T − t) =
dq

𝑀̇𝐶
∗ {−1 −

𝑀̇𝐶

𝑚̇𝑐
} 

But we know that dq = UPdx(T − t), where Pdx = dA. 

d(T − t)

T − t
=

U

𝑀̇𝐶
∗ {−1 −

𝑀̇𝐶

𝑚̇𝑐
} 𝑑𝐴 

Integrating both sides from inlet (a) to outlet (b), we obtain 

ln{(Tb − tb) /(Ta − ta) } = UA/𝑀̇𝐶 ∗ {−1 −
𝑀̇𝐶

𝑚̇𝑐
} 

For the entire heat exchanger, we know: 

−𝑀̇𝐶(𝑇𝑏 − 𝑇𝑎) = 𝑚̇𝑐(𝑡𝑏 − 𝑡𝑎) 
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Back substitute: 

ln{(Tb − tb) /(Ta − ta)} = UA/𝑀̇𝐶(𝑇𝑏 − 𝑇𝑎) ∗ {(𝑇𝑎 − 𝑇𝑏) + 𝑡𝑏 − 𝑡𝑎} 

−q = 𝑀̇𝐶(𝑇𝑏 − 𝑇𝑎) = 𝑈𝐴{(𝑇𝑎 − 𝑇𝑏) + 𝑡𝑏 − 𝑡𝑎}/ ln{(Tb − tb) /(Ta − ta)} 

Since q = UA∆T 

Now we can write ∆T = LMTD (Log Mean Temperature Difference) 

∆T = {(𝑇𝑏 − 𝑡𝑏) − (𝑇𝑎 − 𝑡𝑎)}/ ln{(Tb − tb) /(Ta − ta)} 

 

Note that it doesn’t matter which side is a and b. You can reverse it and still get the same answer. (i.e. 

switch a and b) 

It also doesn’t matter which direction the flows are traveling in, as long as “a” and “b” refer to same 

physical end of the heat exchanger. 

 

Think of the LMTD as a convenient way to define a ∆T between two streams whose temperature is 

continuously varying. 

Special case: Balanced counter flow heat exchanger  

Assuming 𝑀̇ = 𝑚̇ and C=c, then the LMTD becomes undefined as ∆Tb = ∆Ta and LMTD=
0

0
. 

The way to resolve this is the following: 
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Suppose ∆Tb = ∆Ta + 𝜀, where ε ≪ 1 

LMTD =
∆Ta + 𝜀 − ∆Ta

ln {
∆Ta + 𝜀

∆Ta
}

= 𝜀/ ln {1 +
𝜀

∆Ta
} ≈ ∆Ta = ∆Tb = ∆T 

In general, we can say the following: 

Parallel Flow Counter Flow 

Disadvantage 1: Large temperature difference at 
one end of the heat exchanger causes added 
thermal stresses and early failure. 

Advantage 1: More uniform ∆T minimizes the 
thermal stresses throughout the heat exchanger. 

Disadvantage 2: The outlet temperature of the 
cold fluid never exceeds the outlet temperature of 
the hot fluid. Less efficient.  

Advantage 2: The outlet temperature of the cold 
flow can approach the highest temperature of the 
hot fluid. More efficient. 

 Advantage 3: More uniform ∆T produces a more 
uniform q. 

 

𝜺 − 𝑵𝑻𝑼 method (Effectiveness-NTU method) 

Note that in most heat exchanger design problems, we don’t know the fluid outlet temperatures in 

advance.  

 

Now we can define a quantity called the capacity 

Ch = (𝑀̇𝐶)
ℎ𝑜𝑡

[
𝑊

𝐾
]; Cc = (𝑚̇c)cold [

𝑊

𝐾
] 

To solve, we could guess exit temperature, solve for Qh = Qc = Ch∆Th = 𝐶𝑐∆𝑇𝑐 

Then we would have to calculate Q from UALMTD and check against our previous answer. If differing, 

we would guess another exit temperature and try again. 

However, we can make our lives much easier with 

ε =
actual heat transferred

maximum heat that could possibly be transferred from one stream to other
  

Mathematically, this is equal to: 
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ε =
Ch(𝑇ℎ,𝑖𝑛 − 𝑇ℎ,𝑜𝑢𝑡)

𝐶min(𝑇ℎ,𝑖𝑛 − 𝑇𝑐,𝑖𝑛)
=

Cc(𝑇𝑐,𝑜𝑢𝑡 − 𝑇𝑐,𝑖𝑛)

𝐶min(𝑇ℎ,𝑖𝑛 − 𝑇𝑐,𝑖𝑛)
 

where  Cmin is the smaller of Ch&𝐶𝑐. 

So we write: Q = εCmin(𝑇ℎ,𝑖𝑛 − 𝑇𝑐,𝑖𝑛) 

We can also define: NTU =
UA

Cmin
=

ℎ𝑒𝑎𝑡 𝑟𝑎𝑡𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 ℎ𝑒𝑎𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟

ℎ𝑒𝑎𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑓𝑙𝑜𝑤
    (dimensionless) 

Using energy balances and simplification, we can solve for our two cases: 

i. Parallel flow: 

− (
Cmin

Cc
+

Cmin

Ch
) NTU = ln [−

(1 +
Cc
Ch

) εCmin

Cc
+ 1] 

Solving for ε, we obtan: 

ε =
1−exp[−(1+

Cmin
Cmax

)NTU]

1+
C𝑚𝑖𝑛
Cmax

= f(
Cmin

Cmax
, NTU) only 

ii. Counter flow: 

ε =
1−exp[−(1−

Cmin
Cmax

)NTU]

1−
Cmin
Cmax

exp[−(1−
Cmin
Cmax

)NTU]
= f(

Cmin

Cmax
, NTU) only 

We can plot our results in a more useful form 

 


