One-Dimensional, Steady-State Heat Conduction

(Reorganization of the Lecture Notes from Professor Nenad Miljkovic)
1-D, steady state, $\dot{Q}^{\prime \prime \prime}=0, k=$ constant
We know from heat diffusion equation that $\nabla^{2} T=0$.
(1) Slab

$$
\begin{gathered}
\int \frac{\partial^{2} T}{\partial x^{2}}=\int 0 \\
\int \frac{\partial T}{\partial x}=\int C_{1} \\
\mathrm{~T}(\mathrm{x})=\mathrm{C}_{1} x+C_{2}
\end{gathered}
$$

Given the boundary conditions $T(x=0)=T_{1}, T(x=L)=T_{2}$

$$
\mathrm{T}(\mathrm{x})=\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{L} * x+T_{1}
$$

So if we define a heat transfer resistance: $R, A=$ area

$$
\begin{gathered}
\mathrm{Q}=\frac{\Delta \mathrm{T}}{\mathrm{R}} \\
\mathrm{Q}=-\mathrm{kA} \frac{\partial \mathrm{~T}}{\partial \mathrm{x}}
\end{gathered}
$$

From above we know that $\frac{\partial T}{\partial \mathrm{x}}=\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~L}}=-\frac{\Delta T}{L}$

$$
\mathrm{Q}=\frac{\mathrm{kA}}{\mathrm{~L}} * \Delta \mathrm{~T}=\frac{1}{\mathrm{R}} * \Delta \mathrm{~T}
$$

Thermal resistance of a solid slab:

$$
\mathrm{R}_{\text {slab }}=L / k A
$$

(2) Circular cylinder

We know the heat equation in radial coordinate is:

$$
\begin{gathered}
\frac{1}{\mathrm{r}} * \frac{\partial\left(\mathrm{r} * \frac{\partial \mathrm{~T}}{\partial \mathrm{r}}\right)}{\partial \mathrm{r}}=0 \\
r \frac{\partial \mathrm{~T}}{\partial \mathrm{r}}=C_{1} \\
\mathrm{~T}(\mathrm{r})=\mathrm{C}_{1} \ln (r)+C_{2}
\end{gathered}
$$

After applying the boundary conditions:

$$
\frac{\mathrm{T}-\mathrm{T}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}=\ln \left(\frac{r}{r_{1}}\right) / \ln \left(\frac{r_{2}}{r_{1}}\right)
$$

Similarly, cylindrical thermal resistance:

$$
\mathrm{R}_{\mathrm{cyl}}=\left|\ln \left(\mathrm{r}_{2} / \mathrm{r}_{1}\right) / 2 \pi \mathrm{~kL}\right|
$$

(3) Spherical system

Spherical heat diffusion equation:

$$
\frac{1}{\mathrm{r}^{2}} * \frac{\partial\left(r^{2} * \frac{\partial T}{\partial \mathrm{r}}\right)}{\partial \mathrm{r}}=0
$$

Spherical temperature profile:

$$
\frac{\mathrm{T}-\mathrm{T}_{2}}{\mathrm{~T}_{1}-\mathrm{T}_{2}}=\left(\frac{1}{\mathrm{r}}-\frac{1}{\mathrm{r}_{2}}\right) /\left(\frac{1}{\mathrm{r}_{1}}-\frac{1}{\mathrm{r}_{2}}\right)
$$

Spherical thermal resistance:

$$
\mathrm{R}_{\mathrm{sph}}=\frac{\left|\frac{1}{\mathrm{r}_{1}}-\frac{1}{\mathrm{r}_{2}}\right|}{4 \pi \mathrm{k}}
$$

Composite problems

(1) Composite wall

$\mathrm{L}_{\mathrm{i}}=$ thickness of the i -th wall
k_{i} =thermal conductivity of the i -th wall
$\mathrm{h}_{\mathrm{i}}=$ inner wall heat transfer coefficient
$h_{o}=o u t e r$ wall heat transfer coefficient
(2) Composite cylinder

- $T_{f,}$

$$
\mathrm{Q}=\frac{2 \pi \mathrm{l}\left(\mathrm{~T}_{\mathrm{f}, \mathrm{i}}-T_{f, o}\right)}{\frac{1}{h_{i} r_{i}}+\frac{1}{h_{o} r_{n+1}}+\sum_{j=1}^{n} \frac{\ln \left(\frac{r_{i+1}}{r_{i}}\right)}{k_{i}}}
$$

Heat generation (slab)

Steady state, 1-D, constant properties, uniform $\dot{Q}^{\prime \prime \prime}$.

$$
\begin{gathered}
\frac{\partial\left(\mathrm{k} * \frac{\partial \mathrm{~T}}{\partial \mathrm{x}}\right)}{\partial \mathrm{x}}+\dot{Q}^{\prime \prime \prime}=\frac{\rho \mathrm{C}_{\mathrm{p}} \partial T}{\partial t}=0 \\
\frac{\partial^{2} T}{\partial \mathrm{x}^{2}}+\frac{\dot{Q}^{\prime \prime \prime}}{k}=0
\end{gathered}
$$

Boundary conditions:

$$
\begin{gathered}
\mathrm{T}(\mathrm{x}=\mathrm{L})=\mathrm{T}_{\mathrm{w}} \\
\frac{\partial \mathrm{~T}}{\partial \mathrm{x}} \mathrm{I}_{x=0}=0 \\
\mathrm{~T}(\mathrm{x})=\mathrm{T}_{\mathrm{w}}+\frac{\dot{Q}^{\prime \prime \prime} L^{2}}{2 k}\left(1-\left(\frac{x}{L}\right)^{2}\right) \\
\mathrm{T}_{\mathrm{max}}=\mathrm{T}_{\mathrm{w}}+\frac{\dot{Q}^{\prime \prime \prime} L^{2}}{2 k} \text { at } \mathrm{x}=0 . \\
\mathrm{q}_{\text {out }}^{\prime \prime}=\dot{Q}^{\prime \prime \prime} L
\end{gathered}
$$

In general, for heat generation we have the following formulation:

$$
-\frac{\mathrm{k}}{\mathrm{r}^{\mathrm{n}}} \frac{\partial\left(r^{n} * \frac{\partial T}{\partial r}\right)}{\partial r}=\dot{Q}^{\prime \prime \prime}
$$

Where $\mathrm{n}=0$ for slab, $\mathrm{n}=1$ for cylinder, $\mathrm{n}=2$ for sphere.
This only works if $\dot{Q}^{\prime \prime \prime}=$ constant
Our generalized result is:
Temperature profile:

$$
\mathrm{T}(\mathrm{r})=\mathrm{T}_{\mathrm{a}}+\frac{\dot{Q}^{\prime \prime \prime} a^{2}}{2(n+1) k}\left(1-\frac{r^{2}}{a^{2}}\right)
$$

Heat flux:

$$
\mathrm{q}^{\prime \prime}=\frac{\dot{Q}^{\prime \prime \prime} r}{n+1}
$$

Maximum temperature where T_{a} is the boundary temperature on the outside:

$$
\mathrm{T}_{\max }=T(r=0)=\mathrm{T}_{\mathrm{a}}+\frac{\dot{Q}^{\prime \prime \prime} a^{2}}{2(n+1) k}
$$

Conduction for general shapes

No convection, steady state, $\dot{Q}^{\prime \prime \prime}=0, k=$ consant, 1-D
Define an orthogonal coordinate system:
$\mathrm{u}_{1}, u_{2}, u_{3}$ (directions) $\mathrm{s}_{1}, s_{2}, s_{3}$ (lengths) $\mathrm{ds}_{1}=h_{1} d u_{1}, \mathrm{ds}_{2}=h_{2} d u_{2}, \mathrm{ds}_{3}=h_{3} d u_{3}$

$$
\begin{gathered}
\mathrm{q}^{\prime \prime}=-\mathrm{k} * \frac{\partial \mathrm{~T}}{\partial \mathrm{~s}_{1}} \\
\mathrm{Q}=\mathrm{Aq}^{\prime \prime}=-\mathrm{kA}\left(\mathrm{u}_{1}\right) \frac{\partial \mathrm{T}}{\partial \mathrm{~s}_{1}}
\end{gathered}
$$

Rearranging and integrating (assuming $\mathrm{ds}_{1}=\mathrm{du}_{1}$)

$$
\begin{gathered}
\frac{\mathrm{Q}}{\mathrm{k}} * \int_{\left(u_{1}\right)_{a}}^{\left(u_{1}\right)_{b}} \frac{d u_{1}}{A\left(u_{1}\right)}=-\int_{T_{a}}^{T_{b}} d T=T_{a}-T_{b}=\Delta T \\
\mathrm{Q}=\Delta \mathrm{T} /\left(\frac{1}{\mathrm{k}} * \int \frac{d u_{1}}{A\left(u_{1}\right)}\right)=\Delta T / R \\
\left.\mathrm{R}=\frac{1}{\mathrm{k}} * \int \frac{d u_{1}}{A\left(u_{1}\right)}\right)
\end{gathered}
$$

Double check our previous solutions:
(1) Slab: $\mathrm{u}_{1}=x, d u_{1}=d x, A\left(u_{1}\right)=$ constant

$$
\mathrm{R}_{\text {slab }}=\frac{1}{k A} \int d u_{1}=\frac{1}{k A} \int d x=L / k A
$$

(2) Cylinder: $\mathrm{u}_{1}=r, \mathrm{du}_{1}=d r, \mathrm{~A}\left(\mathrm{u}_{1}\right)=A(r)=2 \pi r l$

$$
\mathrm{R}_{\mathrm{cyl}}=\frac{1}{\mathrm{k}} * \int_{r_{1}}^{r_{2}} \frac{d r}{2 \pi r l}=\frac{\ln \left(\frac{r_{2}}{r_{1}}\right)}{2 \pi k l}
$$

(3) Sphere: $\mathrm{u}_{1}=r, d u_{1}=d r, A\left(u_{1}\right)=A(r)=4 \pi r^{2}$

$$
\mathrm{R}_{\mathrm{sph}}=\frac{1}{k} * \int_{r_{1}}^{r_{2}} \frac{d r}{4 \pi r^{2}}=\frac{1}{4 \pi k} * \int_{r_{1}}^{r_{2}} \frac{d r}{r^{2}}=\frac{1}{4 \pi k}\left(1 \backslash r_{1}-1 \backslash r_{2}\right)
$$

Composite wall problems

There are two ways to analyze this problem. They give different answers.
(1) Parallel approach

Add adiabatic surface to divide R_{1} and R_{4} into two.

$$
\begin{gathered}
\mathrm{R}_{\text {Lower }}=\frac{L_{1}}{k_{1} A_{2}}+\frac{L_{2}}{k_{2} A_{2}}+\frac{L_{4}}{k_{4} A_{2}} \\
\mathrm{R}_{\text {Upper }}=\frac{L_{1}}{k_{1} A_{3}}+\frac{L_{2}}{k_{3} A_{3}}+\frac{L_{4}}{k_{4} A_{3}} \\
\frac{1}{\mathrm{R}_{\mathrm{p}}}=\frac{1}{\mathrm{R}_{\text {Lower }}}+\frac{1}{\mathrm{R}_{\text {Upper }}} \\
\frac{1}{\mathrm{R}_{\mathrm{p}}}=\left(\frac{\mathrm{A}_{2}}{\frac{\mathrm{~L}_{1}}{\mathrm{k}_{1}}+\frac{\mathrm{L}_{2}}{\mathrm{k}_{2}}+\frac{\mathrm{L}_{4}}{\mathrm{k}_{4}}}+\frac{\mathrm{A}_{3}}{\frac{\mathrm{~L}_{1}}{\mathrm{k}_{1}}+\frac{\mathrm{L}_{3}}{\mathrm{k}_{3}}+\frac{\mathrm{L}_{4}}{\mathrm{k}_{4}}}\right) \\
\mathrm{Q}_{\mathrm{p}}=\frac{\Delta \mathrm{T}}{\mathrm{R}_{\mathrm{p}}}=\left(\frac{\mathrm{A}_{2}}{\frac{\mathrm{~L}_{1}}{\mathrm{k}_{1}}+\frac{\mathrm{L}_{2}}{\mathrm{k}_{2}}+\frac{\mathrm{L}_{4}}{\mathrm{k}_{4}}}+\frac{\mathrm{A}_{3}}{\frac{\mathrm{~L}_{1}}{\mathrm{k}_{1}}+\frac{\mathrm{L}_{3}}{\mathrm{k}_{3}}+\frac{\mathrm{L}_{4}}{\mathrm{k}_{4}}}\right) \Delta \mathrm{T}
\end{gathered}
$$

(2) Series approach

It is always true that $\mathrm{Q}_{\mathrm{p}} \leq \mathrm{Q}_{\text {real }} \leq Q_{s}$
Aside: Think of this wo y:
Real Life: T will vary here
T_{1}

While by adding infinite conductance between R1 and R2, R3, the temperature at the boundary becomes the same.
In general:

1. Adding adiabatic surface: R goes up, Q goes down;
2. Allowing infinite conductance: R goes down, Q goes up.
