

- Govern mechanics and thermodynamics of systems
- Control Mass Laws
- mass: can not create or destroy mass (e.g., neglect nuclear reactions)
- momentum: Newton's Law, F=ma
- energy: 1st Law of thermodynamics, $\mathrm{dE}=\delta \mathrm{Q}-\delta \mathrm{W}$
- entropy: 2nd Law, $\mathrm{dS}=\delta \mathrm{Q} / \mathrm{T}+\delta \mathrm{P}_{\mathrm{s}}$
- Propulsion systems generally employ fluid flow
- need to write conservation laws in terms for Control Volumes

Conservaito Equations -1
Sopyright © 2000 by bery. M. Setizman. All ights reseseed
AE4451

## = Georgia College (of

Tech
( Migline erfing
Reynolds Transport Theorem - RTT

- Provides general form for converting conservation laws from control mass to control volumes
- Take arbitrary control volume (CV); can be moving - mass and energy ("heat" Q and work W)


- Take any extensive property $\mathbf{B}$, that follows a "conservation" law and its intensive version $\beta$ (per mass); can show

$$
\left.\rightarrow \frac{\mathrm{dB}}{\mathrm{~d} t}\right|_{C M}=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{C V} \rho \beta d V+\int_{C S} \rho \beta\left(\vec{u}_{\text {rel }} \cdot \hat{n}\right) d A
$$

Replace with appropriate Storage term Net flux of property leaving
Control Mass (rate of increase CV, carried by flow
Conservation Law inside CV) (outflow - inflow)

- Always leads to PICO relationship

Production + Input $=$ Change (in time) + Output

Conservaiten Equations -3

AE4451


- If property of interest is mass

$$
\mathrm{B}=m, \quad \beta=\frac{\mathrm{dB}}{\mathrm{~d} m}=\frac{\mathrm{d}(m)}{\mathrm{d} m}=1
$$

- From RTT

$$
\begin{aligned}
\left.\frac{\mathrm{dB}}{\mathrm{~d} t}\right|_{C M} & =\frac{\mathrm{d}}{\mathrm{~d} t} \int_{C V} \rho \beta d V+\int_{C S} \rho \beta\left(\vec{u}_{\text {rel }} \cdot \hat{n}\right) d A \\
\left.\frac{\mathrm{~d}(m)}{\mathrm{d} t}\right|_{C M} & =\frac{\mathrm{d}}{\mathrm{~d} t} \int_{C V} \rho 1 d V+\int_{C S} \rho 1\left(\vec{u}_{\text {rel }} \cdot \hat{n}\right) d A
\end{aligned}
$$

- CM: $\left.\quad \frac{\mathrm{d}(m)}{\mathrm{d} t}\right|_{C M}=0$

Integral Control
Volume Form of Mass Conservation

- CV:

$$
0=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{C V} \rho d V+\int_{C S} \rho\left(\vec{u}_{r e l} \cdot \hat{n}\right) d A
$$

Simplified Mass Conservation

$$
0=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{C V} \rho d V+\int_{C S}\left(\vec{u}_{\text {rel }} \cdot \hat{n}\right) d A
$$

- Uniform flow (at CS) - no variations across flow

$$
\begin{aligned}
\int_{C S(t)} \rho\left(\vec{u}_{\text {rel }} \cdot \hat{n}\right) d A & =\sum_{\text {outlets }} \rho u_{\text {rel }} A-\sum_{\text {inlets }} \rho u_{\text {rel }} A \\
& =\sum_{\text {outlets }} \dot{m}-\sum_{\text {inlets }} \dot{m}
\end{aligned}
$$

- Add Steady-State

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{C V} \rho d V=0 & \\
& \Rightarrow \sum_{\substack{\text { outlets } \\
\dot{m}}}=\sum_{\text {inlets }} \dot{m} \\
\not P \mathrm{I}=\not \subset \mathbf{O} & \rightarrow \text { Input }=\mathbf{O u t p u t}
\end{aligned}
$$




## =Georgia ©@llegs of <br> Tech

## Conservation of Momentum

- Linear momentum

$$
\overrightarrow{\mathrm{B}}=m \vec{u}, \quad \vec{\beta}=\vec{u}
$$

- RTT then gives

$$
\left.\frac{\mathrm{d}(m \vec{u})}{\mathrm{d} t}\right|_{C M}=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{C V} \rho \vec{u} d V+\int_{C S} \rho \vec{u}\left(\vec{u}_{r e l} \cdot \hat{n}\right) d A
$$

- Use Newton's Law "production"


$$
\sum \vec{F}_{C V}=\dot{\vec{P}}_{\text {momentum }}=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{C V} \rho \vec{u} d V+\int_{C S} \rho \vec{u}\left(\vec{u}_{r e l} \cdot \hat{n}\right) d A
$$

Production $=$ Change + Out-In


- Examine different forces that can act on matter in our control volume
e.g., gravity e.g., pressure,
- Body forces

$$
\vec{F}_{b o d y}=\int_{C V} \rho \vec{f} d V \text { with } \vec{f}=\begin{gathered}
\text { body force/mass, } \\
\text { i.e, acceleration }
\end{gathered}
$$

- Surface forces
- free surfaces: not connected to solid body crossing control surface
- connected surfaces: solid boundaries where there are reaction forces

- Free surfaces
normal stress shear stress

- Connected solid surfaces

$$
\text { direction to } n
$$

- force on fluid is reaction force (inverse) of force on solid body

$$
\vec{F}_{\text {on fluid }}=-\vec{F}_{\text {on solid body }}
$$

$$
\begin{aligned}
& \text { opposite } \\
& \text { direction to } n
\end{aligned}
$$



- Combine Integral Control Volume Form of Momentum Conservation

$$
\vec{F}_{\text {solid body }}^{\text {on fluid }} \boldsymbol{-}-\int_{\text {open }} p \hat{n} d A+\int_{\text {open }} \vec{\sigma}_{\text {shear }} d A+\int_{C V} \rho \vec{f} d V=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{C V} \rho \vec{u} d V+\int_{C S} \rho \vec{u}\left(\vec{u}_{\text {rel }} \cdot \hat{n}\right) d A
$$



- Energy: microscopic + macroscopic forms of energy

$$
\mathrm{B}=E_{o}=E+E_{\text {kinetic }}=E+\frac{1}{2} m u^{2}
$$

energy per mass $\rightarrow \beta=e_{o}=e+\frac{u^{2}}{2}$

- RTT then gives

$$
\left.\frac{\mathrm{d}\left(E_{t o t}\right)}{\mathrm{d} t}\right|_{C M}=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{C V} \rho e_{t o t} d V+\int_{C S} \rho e_{t o t}\left(\vec{u}_{r e l} \cdot \hat{n}\right) d A
$$

- Use $1^{\text {st }}$ Law Thermodynamics for energy conservation of control mass

Conservaiton Equations -9
Copyright © 2001 by y Jery M . Setzman. All ight resesed. AE4451

$1^{\text {st }}$ Law of Thermodynamics

- Differential form $d E_{C M}=\delta Q_{i n}-\delta W_{\text {out }}$

$$
\left.\frac{\mathrm{d} E}{\mathrm{~d} t}\right|_{C M}=\frac{\delta Q_{\text {in }}}{\mathrm{d} t}-\frac{\delta W_{\text {out }}}{\mathrm{d} t}=\dot{Q}_{\text {in }}-\dot{W}_{\text {out }}
$$

- Into RTT

$$
\dot{Q}_{\text {in }}-\dot{W}_{\text {out }}=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{C V} \rho e_{o} d V+\int_{C S} \rho e_{o}\left(\vec{u}_{\text {rel }} \cdot \hat{n}\right) d A
$$

- But work is related to forces (F•x) acting on CV
- already examined some kinds of forces
- let's relate them to work terms

- Relationship

$$
\dot{W}=\vec{F} \cdot \frac{\mathrm{~d} \vec{x}}{\mathrm{~d} t}=\vec{F} \cdot \vec{u} \quad \text { Since we let work be }
$$

- Body forces

$$
\dot{W}_{b o d y}=\int_{C V} \rho \vec{f} \cdot \vec{u} d V
$$ positive when done $\mathbf{B Y}$ fluid

- Fluid forces (stresses)

$$
\begin{aligned}
\dot{W}_{\text {press }} & =\int_{\text {CS open }} p(\vec{u} \cdot \hat{n}) d A \\
\dot{W}_{\text {shear }} & =-\int_{\text {CS open }} \vec{\sigma} \cdot \vec{u} d A
\end{aligned}
$$

"Flow Work"

- Reaction Forces
- lump into "useful" work term, e.g., shaft work

$$
\dot{W}_{\text {shaft }}
$$



- Combine into RTT result (neglect shear forces)
$\dot{Q}_{\text {in }}-\dot{W}_{\text {shaft }}+\int_{C V} \rho \vec{f} \cdot \vec{u} d V-\int_{\substack{C S \\ \text { open }}} p(\vec{u} \cdot \hat{n}) d A=\frac{\mathrm{d}}{\mathrm{d} t} \int_{C V} \rho e_{o} d V+\int_{C S} \rho e_{o}\left(\vec{u}_{\text {rel }} \cdot \hat{n}\right) d A$
$\begin{gathered}\begin{array}{c}\text { Combine flow work } \\ \text { and energy flux }\end{array}\end{gathered} \rho e_{o}+\rho \frac{p}{\rho}=\rho\left(e_{o}+\frac{p}{\rho}\right)=\rho h_{o}^{2} \quad \begin{gathered}\text { Enthalpy }^{2} \\ h_{o}=h+\frac{u^{2}}{2}\end{gathered}$
$\dot{Q}_{i n}-\dot{W}_{\text {shaft }}+\int_{C V} \mathrm{f} \vec{f} \cdot \vec{u} d V-\int_{\substack{C S \\ \text { open }}} p\left(\vec{u}-\vec{u}_{\text {rel }}\right) \cdot \hat{n} d A=\frac{\mathrm{d}}{\mathrm{d} t} \int_{C V} \rho e_{o} d V+\int_{C S} \rho h_{o}\left(\vec{u}_{\text {rel }} \cdot \hat{n}\right) d A$
- For reference frame moving with control volume at constant velocity and no body forces


## 0

$$
\dot{Q}_{\text {in }}-\dot{W}_{\text {shaft }}=\frac{\mathrm{d}}{\mathrm{~d} t} \int_{C V} \rho e_{o} d V+\int_{C S} \rho h_{o}(\vec{u} \cdot \hat{n}) d A
$$

$\not \supset \mathbf{I}=\mathbf{C O} \quad$ In - Out Change Out - In, of energy in mass

