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Boundary Layer
(Reorganization of the Lecture Notes from Professor Anthony Jacobi and Professor Nenad Miljkovic)
Consider a steady flow of a Newtonian, Fourier-Biot fluid over a flat surface with constant properties,
incompressible, 2-D flow and no body force.
Note:

1. A Newtonian fluid is a fluid in which the viscous stresses arising from its flow, at every point, are
linearly proportional to the local strain rate-the rate of change of its deformation over time.
That is equivalent to saying that those forces are proportional to the rates of change of the
fluid's velocity vector as one moves away from the point in question in various directions.

2. A non-Newtonian fluid is a fluid whose viscosity is variable based on applied stress or force.
Many polymer solutions and molten polymers are non-Newtonian fluids, as are many commonly
found substances such as ketchup, starch suspensions, paint, and shampoo. In a Newtonian fluid,
the relation between the shear stress and the strain rate is linear, the constant of
proportionality being the coefficient of viscosity. In a non-Newtonian fluid, the relation between
the shear stress and the strain rate is nonlinear, and can even be time-dependent. Therefore a
constant coefficient of viscosity cannot be defined.
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Steady flow: pri 0

2-D flow: w = 0,% =0
Therefore for the continuity equation what we are left with is:
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After cleaning up:
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Assume the effects of the wall to be confined to a region near the wall and call that region the boundary
layer, &, (&, K x).
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a_ + Z— = 0 as is given by the continuity equation.

Cleaning up and we get:
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Now consider a temperature boundary layer (7).

Assume 8, K X, 81 K X,8, < 7.
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Scaling analysis
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Governing equation becomes:
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For &, > O, NuX~Rez(Pr)3 <~ Pr3 for high Pr.

As a summary, for laminar boundary layer with Re, > 100
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Now let’s consider viscous dissipation:
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Since 2-D, incompressible, constant properties, steady flow, no body force, no U"”
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Therefore for a boundary layer with viscous dissipation
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N . du ov
Continuity equation: ™ + pi 0
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: X — ¥ — = * —
Momentum equation: u Ix +v oy 1% 9y
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. * — * — = * — — % | —
Energy equation: u % +v oy a 9y + G (6y)

Our results from before are unchanged for continuity and momentum. We consider three scenarios for
energy.
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Case one cannot happen. If 8, is that big and dissipation matters, we can’t have T, at 81 as kinetic
energy is dissipated into heat.
Case two: 8,~67 = 6
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Advection ~ Diffusion, Dissipation
For Pr~1,
if Ec « 1, advection~diffusion and we neglect dissipation;
if Ec~1, advection~diffusion~dissipation;
if Ec > 1, not possible for 67~8,.

Case three: 61 > &,
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As before 52 ~Re,
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For Pr~1 or Pr > 1,advection~dissipation. Ec~1 u * o c * (5)

For vPr « 1 might get diffusion.

Friction and heat transfer
We have the model equations; they tell us about friction and heat transfer
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Only the gradient at the wall matters.
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So we can write (assume no dissipation)
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Integrate continuity equation, use Leibnitz, goto Y = &:
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Y
d (fo quy) oT
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Substitute vy from continuity equation into the other two equations and rearrange.
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To use these equatons
e Assume a velocity profile;
e Obtain 1% order ordinary differential equation for §(x);
e Solve for 8(x) and use profile to get T.

There is no analytical solution available!!!!

Assume% =f (%) =f(m)
wheren =

O I<

f(n) =a+bn+cn? +dn3
Boundary conditions:
ux,0)=0—-a=0
ux,8)=U,—->b+c+d=1

Ju
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Solving 0.D.E. of §(x), we get §(x) = 4.64 (;—")
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Assume 0 = TT_TS =e+f+gn®+hn3

oo_Ts -
wheren = y/&t
Apply boundary conditions

Energy in integral form:

d(fTgor=0dy) g
® dx - <$)y=o
Substitute the profiles of u and 8, for a case where §p~8y 01 07 L 6, = Pr~1or Pr > 1
Solve and we get

Or 4.53
x LI 1
Re,2Pr3
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Nu, = he __avx _ _ —X * %9 =3+X = 0 331ReEPr§ (in accord with the results from scaling
Xk (Ts—Tw)k 9yy—q 2 Or ’ x
analysis)

Similarity solutions to boundary layer equations
(Through similarity (introduction of @), we turn PDE to ODE so that we can solve.)

. . . aP
Steady state, constant properties, 2-d, no body force in x, neglect @, no U’”’, boundary layers, no e

N . du |, ov
Continuity equation: ™ + - 0
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Momentum equation: u o +v 3y v 357
Energy equation: u * ot + v * or _ a * o°1
gy €d ’ ax ay 0y?

Define
_ 09 _ 0
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Continuity is satisfied, substitute this into momentum equation.
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Out of the blue:
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Substitute into momentum and rearrange
"+ % * f+ f' = 0 (magically...)
where f' = df/dn

Boundary conditions:
u(x,0) = 0 wheny=01 = 0 for x>0

Uf’nzo = 0
Therefore@n=0f" =0

v(x,0) =0
Therefore @n=0f=10

u(x,o) =U
Therefore fﬁ_,oo =1

The nonlinear PDE modeling momentum is now ODE. Solve numerically.

How do we determine what to assume?
The boundary layer equations model an artificial thing. No natural length scale. We contrived 8.
In the boundary layers, AN goes from 0 to 1.

Scale analysis showed
) v
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Therefore §~y % -1

This is how we get our assumption! (S HBNEHEDISSIOESIISHSNGNUNNIRDENOIODEN

Recall our discussion
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T(x,0) = T, Ti
T(x > oo,t) =T

T(0,t > 0) =T

§ is the penetration depth.
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Similarity steps:
1. Group variables together;
2. Turn PDE to ODE.

The thermal boundary layer

aT aT 9°T
u*&+v a—yza W
T(x,0) = T
T(0,y) = Te
T(x,0) = To,
Take 8 = T_;F;

90 00 920
u>»<a—+v>»<a——v/Pr*ay2

B8(x,0) = 0,0(0,y) = 1,0(x, ) = 1

, U
Define 8,(n) = 8(x,y),n = y&
The transform will yield 65 + Pz—r *f0,=0,0,(0) =0,0,(0) =1

Nuy = 04./Re, — Solve numerically!

The numerical solution is very closely approximated with
MU — 0.564Prl/2 Pr<0.05
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